1. Question 1

16 marks for question 1
1a) $P(1)=1.2\left(\frac{1}{2}-\frac{1}{20}\right)-\frac{1}{50}=\frac{13}{25}=0.52$
1 mark
1b) $P(2)=1.2\left(P(1)-\frac{1}{20}\right)-\frac{1}{50}=\frac{68}{120}=0.544$
1 mark
1c) $P(t)=1.2\left(P(t-1)-\frac{1}{20}\right)-\frac{1}{50}$
2 marks, -1 if signs are off but rest is ok
1d) linear univariate discrete deterministic (LUDD)
1 mark
1e) $P(1)=1.2\left(P(0)-\frac{1}{20}\right)-\frac{1}{50}$
$P(2)=1.2\left(1.2\left(P(0)-\frac{1}{20}\right)-\frac{1}{50}-\frac{1}{20}\right)-\frac{1}{50}$
$=1.2^{2}(P(0))-\frac{1}{20}\left(1.2+1.2^{2}\right)-\frac{1}{50}(1+1.2)$
$=1.2^{t}(P(0))-\frac{1}{20} \frac{1.2-1.2^{t+1}}{1-1.2}-\frac{1}{50} \frac{1-1.2^{t}}{1-1.2}$
1 mark for writing out first 1-2 steps
1 mark per correct term at the end (3 total)
-1 mark for wrong signs at the end
1f) Computer output that looks like:
0.50000 .52000 .54400 .57280 .60740 .64880 .69860 .75830 .83000 .9160
$1.01921 .14301 .29161 .46991 .68391 .94072 .24882 .61863 .0623 \mathrm{P}(18)=3.0623$
or if formated for long:
0.5000000000000000 .5200000000000000 .5440000000000000 .572800000000000
0.6073600000000000 .6488320000000000 .6985984000000000 .758318079999999
0.8299816959999990 .9159780351999991 .0191736422399991 .143008370687998
1.2916100448255981 .4699320537907171 .6839184645488611 .940702157458633
$2.2488425889503592 .6186111067404313 .062333328088517 \mathrm{P}(18)=3.062333328088517$
Note for this question if their answer is 7.8795 or 7.879516567451061
(-1 mark) since they found year 17 not 18 .
1 mark for stating what $\mathrm{P}(18)$ is
1 mark for showing the iteration (could be graphical as well)
$1 \mathrm{~g}) P^{*}=1.2\left(P^{*}-\frac{1}{20}\right)-\frac{1}{50}$
$0=.2 P^{*}-\frac{3}{50}-\frac{1}{50}$
$\frac{2}{25}=.2 P^{*}$
$\frac{2}{5}=P^{*}=0.4$
2 Marks for the ending

1 Mark for 1st line
1h) $R=1.2>1$ therefore the fixed point is unstable (Note they could also use the derivative here to end up with this as well
2 Marks for conclusion

2. Question 2

6 marks for this question
2a) nonlinear univariate discrete deterministic (NUDD). 1 mark

2b) $S^{*}=S^{*}+\left(-\beta S^{*}+\gamma\right)\left(N-S^{*}\right)$
$S^{*}=N, \frac{\gamma}{\beta}$
2 marks
2c) $f^{\prime}=1-\beta N+2 \beta S^{*}-\gamma$
$f^{\prime}(N)=1+\beta N-\gamma$
N is stable if $-1<1+\beta N-\gamma<1$ or $-2<\beta N-\gamma<0$ (Note it's fine if they left it in absolute value form)
$f^{\prime}\left(\frac{\gamma}{\beta}\right)=1-\beta N+\gamma$
$\frac{\gamma}{\beta}$ is stable if $-1<1-\beta N+\gamma<1$ or $-2<-\beta N+\gamma<0$
1 Mark for the derivative
1 mark for correct stability of each equilibrium (2 total)

3. Question 3

12 marks total
3a) It is a nonlinear univariate discrete deterministic model (NUDD) 1 mark
3b) Fixed points are $N^{*}=0, L, K$
2 marks
3c) $f^{\prime}(N)=1-R+\frac{2 R N}{L}+\frac{2 R N}{K}-\frac{3 R N^{2}}{L K}$
$f^{\prime}(0)=1-R$ which is stable if $-1<1-R<1$ or $-2<-R<0$ or $0<R<2$
$f^{\prime}(L)=1-R+2 R+\frac{2 R L}{K}-\frac{3 R L}{K}=1+R-\frac{R L}{K}$
which is stable if $-1<1+R-\frac{R L}{K}<1$ or $-2<R-\frac{R}{L K}<0$
$f^{\prime}(K)=1-R+\frac{2 R K}{L}+2 R-\frac{3 R K}{L}=1+R-\frac{3 R K}{L}$
which is stable if $-1<1+R-\frac{R K}{L}<1$ or $-2<R-\frac{R K}{L}<0$
If they went further great, but not really needed/expected.
1 mark for derivative
1 mark for sticking in correct fixed points
3 marks for correct conclusion

3d) Fixed points are simply $0,4,8$
They are simple just using 0,L,K from before but just plugging in the values via computer
1 mark
3e) Looking for a plot, or a chart, or a set of numbers.
Key part to actual look at (depending what their output is)
$N(0)=1$ approaches $N^{*}=0$ from above
$N(0)=5$ approaches $N^{*}=8$ from below
$N(0)=11$ approaches $N^{*}=8$ from above
1 mark for each

