1. Eigenvector tips for 2D

$$
\text { If } M=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

then determinant is $D=a_{11} a_{22}-a_{12} a_{21}$, trace is $T=a_{11}+a_{22}$, and eigenvalues obey $\lambda_{1}+\lambda_{2}=T$ and $\lambda_{1} \lambda_{2}=D$. This leads to the characteristic polynomial $\lambda_{i}^{2}-T \lambda_{i}+D$. And so the eigenvalues obey $\lambda_{i}=\frac{T \pm \sqrt{T^{2}-4 D}}{2}$. Finally, if v_{i} and λ_{i} are an eigenvector/eigenvalue pair for M, then $M v_{i}=\lambda_{i} v_{i}$ (i.e. a matrix and a single scalar value do the same thing to an eigenvector!).

2. GEOMETRIC SERIES EXPLAINED

Why does $1+R+R^{2}+R^{3}=\frac{1-R^{4}}{1-R}$?
Look at two infinite geometric series:
$1+R+R^{2}+R^{3}+R^{4} \ldots$
$R^{4}+R^{5}+R^{6} \ldots$
The sum of the first series is $\frac{1}{1-R}$. The sum of the second series is $\frac{R^{4}}{1-R}$. If we subtract the second from the first we end up with
$1+R+R^{2}+R^{3}$
Which is what we want and based off of the two sums above is evaluated as $\frac{1-R^{4}}{1-R}$.

3. EXAMPLE

$$
M=\left(\begin{array}{cc}
2 & 7 \\
-1 & -6
\end{array}\right)
$$

Find the eigenvalues and eigenvectors and hence $x(t)$, given that $x(0)=$ $\left(-7 \sqrt{\frac{1}{50}}+\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{50}}-\sqrt{\frac{1}{2}}\right)$
$T=-4, D=-5$ then
$\lambda_{1}=\frac{-4+\sqrt{(-4)^{2}-4 *(-5)}}{2}$
$\lambda_{1}=\frac{-4+\sqrt{36}}{2}$
$\lambda_{1}=\frac{-4+6}{2}$
$\lambda_{1}=1, \lambda_{2}=-5$
Note that we can either solve $A v=\lambda v,(A-\lambda) v=0$

$$
\begin{aligned}
& A-\lambda_{1}= \\
& v_{1}=-7 v_{2} \\
& \left(-7 v_{2}, v_{2}\right)
\end{aligned}\left(\begin{array}{cc}
1 & 7 \\
-1 & -7
\end{array}\right)
$$

If we want this to be length 1 then

$$
\begin{aligned}
& \sqrt{49 v_{2}^{2}+v_{2}^{2}}=1 \\
& v_{2}=\sqrt{\frac{1}{50}} \\
& v_{1}=-7 \sqrt{\frac{1}{50}} \\
& A-\lambda_{2}=\left(\begin{array}{cc}
7 & 7 \\
-1 & -1
\end{array}\right) \\
& v_{1}=-v_{2} \\
& v_{1}=\sqrt{\frac{1}{2}} \\
& v_{2}=-\sqrt{\frac{1}{2}} \\
& x(t)=c_{1} d_{1}^{t} \overrightarrow{v_{1}}+c_{2} d_{2}^{t} \overrightarrow{v_{2}} \\
& x(0)=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}} \\
& -7 c_{1} \sqrt{\frac{1}{50}}+c_{2} \sqrt{\frac{1}{2}}=-7 \sqrt{\frac{1}{50}}+\sqrt{\frac{1}{2}} \\
& c_{1} \sqrt{\frac{1}{50}}-c_{2} \sqrt{\frac{1}{2}}=\sqrt{\frac{1}{50}}-\sqrt{\frac{1}{2}} \\
&
\end{aligned}
$$

$$
\text { Therefore } c_{1}=1, c_{2}=1
$$

