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A general nonlinear first order recursion follows the same formula as
before with N(t + 1) = f(N(t)), however in this case f is a nonlinear
function. The nonlinearity of f makes for a more difficult analysis in
most cases, but it also makes this model much more versatile than the
linear one.

1. Logistic Model

The logistic model involves imposing bounds on the unrealistic ex-
ponential growth process that occurs in linear models. Begin with the
geometric difference equation, N(t + 1) − N(t) = rN(t). Now set r
equal to a decreasing linear function of N(t) with x-intercept K and
y-intercept R. This yields the difference equation
N(t+ 1)−N(t) = R

K
(K −N(t))N(t)

which in turn leads to the logistic equation

N(t+ 1)−N(t)(R(1− N(t)
K

) + 1)

Fixed Points. Just like with the linear models we have done so far we
start by sticking in N∗ = N(t) = N(t+ 1). This gets us the equation:
N∗ = N∗(R(1− N∗

K
) + 1)

This yields two fixed points. N∗ = 0, which corresponds to the case
where there is zero population, and N∗ = K, which corresponds to a
sustainable non-zero population, which is noted as the carrying capac-
ity.

Stability. As mentioned in the previous lecture, a criterion for sta-
bility is that |f ′(N∗)|< 1 where f ′(N) is the first derivative of f with
respect to N. For the logistic recursion discussed here, we have f(N) =
N(R(1− N

K
) + 1). The derivative of this function is

f ′(N) = R + 1− 2RN
K

The first equilibrium N∗ = 0 has f ′(0) = R + 1 so it will be stable
if |R + 1|< 1 which is equivalent to −2 < R < 0. The second has
f ′(K) = 1− R so it will be stable if |1− R|< 1 which is equivalent to
0 < R < 2. One thing to notice is that neither of these stability ranges
overlap, so they can not both be stable for a given value of R
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If, for example, one is modelling a population of creatures for which it
is known that R = 1, one can conclude that any non-zero population
size will tend towards the carrying capacity. We found the long term
dynamics for this system without even having to solve for N(t).

2. Alternative parameterizations

An ecologist might choose to parameterize the discrete logistic model
as above. A mathematician would probably write
x(t+ 1) = Ax(t)(B − x(t)).
The mathematician has chosen A = R

K
and B = K + K

R
. Mathemati-

cally equivalent parameterizations often have quite different meanings
(or statistical properties), as well as cultural connotations. Another
way of thinking about this is if you had a constant birth rate b and
a constant death rate d, you could either model it as N(t + 1) =
bN(t)− dN(t) or N(t+ 1) = wN(t) where w is b− d.

3. More nonlinear models

These discrete models often come up as approximations of continu-
ous ones. Other 1-D discrete nonlinear models exist, such as the Ricker
model
N(t+ 1) = rN(t)ebN(t)

which was first introduced as a model for fisheries, and also epidemic
models, such as the SI model, which is similar to discrete logistics.

We examine the SI model more closely. Let S(t) represent the num-
ber of people susceptible to a disease, I(t) the number of infected
and N the (time-independent) total population. We now make sev-
eral assumptions. First, that everyone is either susceptible or infected
(N = S(t) + I(t)). Second, that susceptible individuals catch the dis-
ease from infected individuals through a contact rate β. Third, that
infected individuals recover at a rate of γ. Then
S(t+ 1)− S(t) = −βS(t)I(t) + γI(t).
Note that the model right now is really bivariate. To make it univari-
ate, recall that I(t) = N − S(t) so that:
S(t+ 1) = S(t) + (γ − βS(t))(N − S(t)).
This is a slight modification of the logistic equation! You have all the
tools to analyse it yourself.

More involved epidemic models exist. Two examples are the SIR and
SEIR model, which we will study later.
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