MATH 3MB3 FALL 2018 Phase Plane Analysis

1. HARTMAN GROBMAN THEOREM

Hartman Grobman basically states that our original system, mim-
ics the linearization(Jacobian) as long as the eigenvalues aren’t purely
imaginary. If we start with a two by two matrix:

From what we had before, let T' = Trace(A) and A = Det(A) then we
have that A2 = TA+ D =0

Lets look at the following example:
dx

% =-v—z(@®+y?)
&=z -yl +y7)
Then the Jacobian of this system is:
(322 — ¢ —1— 22y
1—2zy —a%—3y?
Given that the only equilibria of this system is (0,0) the Jacobian at
this equilibria is:

0 —1
1 0

Ficure 1. Note that the «circles on the up-
per y axis are actually a mistake. Image from

http://minitorn.tlu.ee/ jaagup/uk/dynsys/ds2/nonlinear/local /local.html
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Which gives a trace of 0 and a determinant of 1. If we tried to use the
above graph it says we should get a center.

If instead we change to polar coordinates. As in z = rcos(d) and
y = rsin(theta) and z* +y* = r? and 0 = arctan(¥) we get the follow-
ing:

0 = arctan(%)

If we differentiate both sides of this we get the following:
do 1 y'z—z'y
dt = 14+(£)2 22

= 212
_ ya—z'y
= £
_ (a—y@?+y?))z—y(—y—a(z>+y?))
r2
2

<

r2 = 22 4 o2
If we differentiate both sides of this we get the following;:

2rr’ = 2za’ + 2yy’
—2xy—2x2(r2)+22y—2y% (r?)
2rt ?f
/I —Zar
T = o = —T
We can now see that non-zero trajectories will decay towards (0,0) and

(0,0) becomes a stable spiral, not a center. So be careful if your eigen-
values had zero real part.

r' =

2. ROUTH-HURWITZ STABILITY CRITERION

Looking at the characteristic polynomial for a 2 by 2 case we have
A2+ a N+ ag =N —TX+ D = 0. We have stability of the fixed point
if both ag and a; are positive. Which translates to the trace has to be
negative, and the determinate has to be positive.

Looking at the characteristic polynomial for a 3 by 3 case we have
A+ asA? + a1\ + ag. We have stability of the fixed point if both
ag, a1, s are positive and asa; > ag.

This goes for higher and higher matrices but gets more and more com-
plicated.

3. GERSHGORIN CIRCLE THEOREM

Let A be a complex n by n matrix, with entries a;; where 7,5 €
1,2, n. Let By =3, lai;|, and D(ay, R;) denote the closed disc
centered at a;i with radius R;, then every eigenvalue of A lies within
at least one of the discs D(ay, R;).
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This theorem seems rather wordy, but is easy to apply. Lets look at
the following 4 by 4 example:

-5 1 1 1
e o . |1 -4 =2 3
J($1,$2,1‘3,1’4) —1 1 -7 1

11 3 -6

Looking at the rows we get the following discs (D(-5,3), D(-4,6), D(-
7.3), D(-6,5)) which doesn’t tell us the stability or if we can even lin-
earize since the disc D(-4,6) allows positive eigenvalues. However if we
instead look at the columns we get the following discs (D(-5,3), D(-4,3),
D(-7,6), D(-6,5)). Now we have that no discs allow positive numbers
or 0, so we can linearize, and the fixed point will be stable since all
eigenvalues have a real part less than 0. This method is quite useful for
when the matrices are at least 3 by 3, this way the eigenvalues don’t
need to be calculated for stability, assuming that you get only negative
discs.
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