1. Hartman Grobman Theorem

Hartman Grobman basically states that our original system, mimics the linearization(Jacobian) as long as the eigenvalues aren't purely imaginary. If we start with a two by two matrix:
From what we had before, let $T=\operatorname{Trace}(A)$ and $\Delta=\operatorname{Det}(A)$ then we have that $\lambda^{2}-T \lambda+D=0$
Lets look at the following example:
$\frac{d x}{d t}=-y-x\left(x^{2}+y^{2}\right)$
$\frac{d y}{d t}=x-y\left(x^{2}+y^{2}\right)$
Then the Jacobian of this system is:
$\left[\begin{array}{cc}-3 x^{2}-y^{2} & -1-2 x y \\ 1-2 x y & -x^{2}-3 y^{2}\end{array}\right]$
Given that the only equilibria of this system is $(0,0)$ the Jacobian at this equilibria is:
$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

Figure 1. Note that the circles on the upper y axis are actually a mistake. Image from http://minitorn.tlu.ee/ jaagup/uk/dynsys/ds2/nonlinear/local/local.html

Which gives a trace of 0 and a determinant of 1 . If we tried to use the above graph it says we should get a center.

If instead we change to polar coordinates. As in $x=r \cos (\theta)$ and $y=r \sin ($ theta $)$ and $x^{2}+y^{2}=r^{2}$ and $\theta=\arctan \left(\frac{y}{x}\right)$ we get the following:
$\theta=\arctan \left(\frac{y}{x}\right)$
If we differentiate both sides of this we get the following:
$\frac{d \theta}{d t}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{y^{\prime} x-x^{\prime} y}{x^{2}}$
$=\frac{y^{\prime} x-x^{\prime} y}{x^{2}+y^{2}}$
$=\frac{y^{\prime} x-x^{\prime} y}{r^{2}}$
$=\frac{\left(x-y\left(x^{2}+y^{2}\right)\right) x-y\left(-y-x\left(x^{2}+y^{2}\right)\right)}{r^{2}}$
$=\frac{r^{2}}{r^{2}}=1$
$r^{2}=x^{2}+y^{2}$
If we differentiate both sides of this we get the following:
$2 r r^{\prime}=2 x x^{\prime}+2 y y^{\prime}$
$r^{\prime}=\frac{-2 x y-2 x^{2}\left(r^{2}\right)+2 x y-2 y^{2}\left(r^{2}\right)}{2 r}$
$r^{\prime}=\frac{-2 r^{4}}{2 r}=-r^{3}$
We can now see that non-zero trajectories will decay towards $(0,0)$ and $(0,0)$ becomes a stable spiral, not a center. So be careful if your eigenvalues had zero real part.

2. Routh-Hurwitz stability Criterion

Looking at the characteristic polynomial for a 2 by 2 case we have $\lambda^{2}+a_{1} \lambda+a_{0}=\lambda^{2}-T \lambda+D=0$. We have stability of the fixed point if both a_{0} and a_{1} are positive. Which translates to the trace has to be negative, and the determinate has to be positive.
Looking at the characteristic polynomial for a 3 by 3 case we have $\lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}$. We have stability of the fixed point if both a_{0}, a_{1}, a_{2} are positive and $a_{2} a_{1}>a_{0}$.
This goes for higher and higher matrices but gets more and more complicated.

3. Gershgorin Circle Theorem

Let A be a complex n by n matrix, with entries $a_{i j}$ where $i, j \in$ $1,2, \cdots, n$. Let $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, and $D\left(a_{i i}, R_{i}\right)$ denote the closed disc centered at $a_{i} i$ with radius R_{i}, then every eigenvalue of A lies within at least one of the discs $D\left(a_{i i}, R_{i}\right)$.

This theorem seems rather wordy, but is easy to apply. Lets look at the following 4 by 4 example:
$J\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}\right)\left[\begin{array}{cccc}-5 & 1 & 1 & 1 \\ -1 & -4 & -2 & 3 \\ -1 & 1 & -7 & 1 \\ 1 & 1 & 3 & -6\end{array}\right]$
Looking at the rows we get the following discs ($\mathrm{D}(-5,3), \mathrm{D}(-4,6), \mathrm{D}(-$ $7,3), \mathrm{D}(-6,5)$) which doesn't tell us the stability or if we can even linearize since the disc $D(-4,6)$ allows positive eigenvalues. However if we instead look at the columns we get the following discs ($\mathrm{D}(-5,3), \mathrm{D}(-4,3)$, $\mathrm{D}(-7,6), \mathrm{D}(-6,5))$. Now we have that no discs allow positive numbers or 0 , so we can linearize, and the fixed point will be stable since all eigenvalues have a real part less than 0 . This method is quite useful for when the matrices are at least 3 by 3, this way the eigenvalues don't need to be calculated for stability, assuming that you get only negative discs.

