

MATH 3MB3 Review

Midterm Date: Friday, October 5

1 Linear Univariate Discrete Deterministic

$$N(t+1) = f(N(t)) \quad (1)$$

- **Equilibria:** set $N(t) = N(t+1) = N_*$ in equation 1 and solve for N_*
- **Stability of equilibria:** stable if $|f'(N_*)| < 1$, otherwise unstable
- **Solve for time-dependent solution:** refer to *Affine Models* or *hw1* for examples
- **Multiple Lags:**

$$N(t+2) = aN(t+1) + bN(t)$$

Let $N(t) = C\lambda^t$:

$$\begin{aligned} C\lambda^{t+2} &= aC\lambda^{t+1} + bC\lambda^t \\ C\lambda^t(\lambda^2) &= C\lambda^t(a\lambda + b) \\ \lambda^2 &= a\lambda + b \\ \lambda^2 - a\lambda - b &= 0 \end{aligned}$$

Solve for λ (using quadratic equation - you will get two values) and substitute it into the general solution of the homogeneous equation:

$$N(t) = C_1\lambda_1^t + C_2\lambda_2^t$$

Find C_1 and C_2 from initial values, i.e. $N(0)$ and $N(1)$.

2 Nonlinear Univariate Discrete Deterministic

$$N(t+1) = f(N(t)) \quad (2)$$

f in equation 4 is a *non-linear* function. However, all analysis is the same as a LUDD model, but will likely be more difficult.

3 Linear Multivariate Discrete Deterministic

$$\vec{x}(t+1) = A \vec{x}(t) \quad (3)$$

In equation 3, $\vec{x}(t) = (x_1(t), \dots, x_n(t))$. The vector $\vec{x}(t)$ has n components and the matrix A is an $n \times n$ matrix.

- **Fixed points:** $\vec{x}(t) = A \vec{x}(t)$
- **Time-dependent solution:**
 1. **Direct approach:** $\vec{x}(t) = A^t \vec{x}(0)$
 2. **Eigenvalue approach:** $\vec{x}(t) = (SD^tS^{-1}) \vec{x}(0)$, where S is a matrix whose columns are the eigenvectors of A and D is a matrix with the eigenvalues on its diagonal and zeroes everywhere else
- **Stability:** Dominant eigenvalue λ_d
 1. **Stable:** $|\lambda_d| < 1$
 2. **Unstable:** $|\lambda_d| > 1$
 3. **Interesting:** $|\lambda_d| = 1$

4 Nonlinear Multivariate Discrete Deterministic

$$\vec{x}(t) = \vec{f} \vec{x}(t) \quad (4)$$

\vec{f} is a vector-valued function, which is non-linear.

- **Fixed points:** Look at $S = S_*$ and $I = I_*$ simultaneously
- **Stability:** Eigenvalues of the Jacobian determine stability (all eigenvalues must be less than one in order for equilibrium point to be stable)

5 Linear Univariate Continuous Deterministic

$$\frac{dx(t)}{dt} = rx(t) \quad (5)$$

- **Fixed point:** set equation 5 to 0
 - $r \neq 0$: fixed point is $x_* = 0$
 - $r = 0$: every real number is a fixed point
- **Stability:**
 - $x > 0$: stable if $r < 0$
 - $x < 0$: stable if $r > 0$
- **Explicit solution:** $x(t) = x(0)e^{rt}$
- **Affine models:** $\frac{dx}{dt} = a - bx$ gives an explicit solution of $x(t) = e^{-bt}(x(0) - \frac{a}{b}) + \frac{a}{b}$

6 Nonlinear Univariate Continuous Deterministic

$$\frac{dx(t)}{dt} = f(t, x(t)) \quad (6)$$

f in equation 6 is a nonlinear function.

- **Fixed points:** $f(x_*) = 0$
- **Stability:** Stable if $f'(x_*) < 0$
- **General solution:** done by solving ODE