MATH 3MB3 Review

Midterm Date: Friday, October 5

1 Linear Univariate Discrete Deterministic

$$N(t+1) = f(N(t)) \tag{1}$$

- Equilibria: set $N(t) = N(t+1) = N_*$ in equation 1 and solve for N_*
- Stability of equilibria: stable if $|f'(N_*) < 1$, otherwise unstable
- Solve for time-dependent solution: refer to Affine Models or hw1 for examples
- Multiple Lags:

$$N(t+2) = aN(t+1) + bN(t)$$

Let $N(t) = C\lambda^t$:

$$C\lambda^{t+2} = aC\lambda^{t+1} + bC\lambda^{t}$$
$$C\lambda^{t}(\lambda^{2}) = C\lambda^{t}(a\lambda + b)$$
$$\lambda^{2} = a\lambda + b$$
$$\lambda^{2} - a\lambda - b = 0$$

Solve for λ (using quadratic equation - you will get two values) and substitute it into the general solution of the homogeneous equation:

$$N(t) = C_1 \lambda_1^t + C_2 \lambda_2^t$$

Find C_1 and C_2 from initial values, i.e. N(0) and N(1).

2 Nonlinear Univariate Discrete Deterministic

$$N(t+1) = f(N(t))$$
 (2)

f in equation 4 is a *non-linear* function. However, all analysis is the same as a LUDD model, but will likely be more difficult.

3 Linear Multivariate Discrete Deterministic

$$\overrightarrow{x}(t+1) = A \overrightarrow{x}(t) \tag{3}$$

In equation 3, $\overrightarrow{x}(t) = (x_1(t), ..., x_n(t))$. The vector $\overrightarrow{x}(t)$ has n components and the matrix A is an $n \ge n$ matrix.

- Fixed points: $\overrightarrow{x}(t) = A \overrightarrow{x}(t)$
- Time-dependent solution:
 - 1. Direct approach: $\overrightarrow{x}(t) = A^t \overrightarrow{x}(0)$
 - 2. Eigenvalue approach: $\overrightarrow{x}(t) = (SD^tS^{-1})\overrightarrow{x}(0)$, where S is a matrix whose columns are the eigenvectors of A and D is a matrix with the eigenvalues on its diagonal and zeroes everywhere else
- Stability: Dominant eigenvalue λ_d
 - 1. Stable: $|\lambda_d| < 1$
 - 2. Unstable: $|\lambda_d| > 1$
 - 3. Interesting: $|\lambda_d| = 1$

4 Nonlinear Multivariate Discrete Deterministic

$$\overrightarrow{x}(t) = \overrightarrow{f} \, \overrightarrow{x}(t) \tag{4}$$

 \overrightarrow{f} is a vector-valued function, which is non-linear.

- Fixed points: Look at $S = S_*$ and $I = I_*$ simultaneously
- **Stability**: Eigenvalues of the Jacobian determine stability (all eigenvalues must be less than one in order for equilibrium point to be stable)

5 Linear Univariate Continuous Deterministic

$$\frac{dx(t)}{dt} = rx(t) \tag{5}$$

• Fixed point: set equation 5 to 0

 $-r \neq 0$: fixed point is $x_* = 0$

- -r = 0: every real number is a fixed point
- Stability:
 - -x > 0: stable if r < 0
 - -x < 0: stable if r > 0
- Explicit solution: $x(t) = x(0)e^{rt}$
- Affine models: $\frac{dx}{dt} = a bx$ gives an explicit solution of $x(t) = e^{-bt}(x(0) \frac{a}{b}) + \frac{a}{b}$

6 Nonlinear Univariate Continuous Deterministic

$$\frac{dx(t)}{dt} = f(t, x(t)) \tag{6}$$

f in equation 6 is a nonlinear function.

- Fixed points: $f(x_*) = 0$
- **Stability**: Stable if $f'(x_*) < 0$
- General solution: done by solving ODE