Sample 1

1. Question 1

a) Nonlinear Univariate Discrete Deterministic
b) $N^{*}=1+N^{*}-\frac{\left(N^{*}\right)^{2}}{4}$
$1=\frac{\left(N^{*}\right)^{2}}{4}$
$4=\left(N^{*}\right)^{2}$
$N^{*}= \pm 2$
c) $f(N)=1+N-\frac{N^{2}}{4}$
$f^{\prime}(N)=1-\frac{N}{2}$
$f^{\prime}(2)=1-\frac{2}{2}=0$
$f^{\prime}(-2)=1-\frac{-2}{2}=2$
Since $\left|f^{\prime}(2)\right|<1$ the fixed point 2 is stable
Since $\left|f^{\prime}(-2)\right|>1$ the fixed point -2 is unstable

2. Question 3

a) Linear Multivariate Discrete Deterministic
b) $x_{1}(t+1)=\frac{1}{2} x_{1}(t)-x_{2}(t)$
$x_{2}(t+1)=a x_{1}(t)-\frac{1}{2} x_{2}(t)$
$x_{1}^{*}=\frac{1}{2} x_{1}^{*}-x_{2}^{*}$
$x_{2}^{*}=a x_{1}^{*}-\frac{1}{2} x_{2}^{*}$
$x_{1}^{*}=-2 x_{2}^{*}$
$x_{2}^{*}=a *\left(-2 x_{2}^{*}\right)-\frac{1}{2} x_{2}^{*}$
$x_{2}^{*}\left(\frac{3}{2}+2 a\right)=0$
Therefore if $a \neq \frac{-3}{4}$ then the fixed point is $(0,0)$
c) $\operatorname{Trace}(A)=0, \operatorname{Det}(A)=\frac{-1}{4}+a$
$\lambda^{2}+a-\frac{1}{4}=0$
$\lambda^{2}=\frac{1}{4}-a$
$\lambda= \pm \sqrt{\frac{1}{4}-a}$
$\sqrt{\frac{1}{4}-a}<1$ implies $-\frac{3}{4}<a<\frac{1}{4}$
Therefore the fixed point $(0,0)$ is stable when $-\frac{3}{4}<a<\frac{1}{4}$
d)In the case $a=\frac{-3}{4}$ from solving the fixed point we find that $x_{1}^{*}=$ $-2 x_{2}^{*}$ is a solution, which is a line of equilibria. These equilibria will not be stable for two reasons:

1) Part c) says $a>\frac{-3}{4}$
2) For any given fixed point, the initial condition as close to it as possible that is still on the line $x_{1}^{*}=-2 x_{2}^{*}$ will not move since it is also a fixed point. Therefor the original fixed point is unstable.

3. Question 4

a) Nonlinear Univariate Continuous Deterministic
b) $0=1-\left(x^{*}\right)^{2}$
$x^{*}= \pm 1$
c) $f(x)=1-x^{2}$
$f^{\prime}(x)=-2 x$
$f^{\prime}(-1)=2>0$, therefore the fixed point -1 is unstable $f^{\prime}(1)=-2<0$, therefore the fixed point 1 is stable
d) $\frac{d x}{(1-x)(1+x)}=d t$

Using partial fractions, we get:
$\frac{1}{(1-x)(1+x)}=\frac{a}{1-x}+\frac{b}{1+x}$
$1=a(1+x)+b(1-x)$
let $\mathrm{x}=1$, then $1=2 a$ therefore $a=\frac{1}{2}$
let $\mathrm{x}=-1$, then $1=2 b$ therefore $b=\frac{1}{2}$
Therefore we have:
$\frac{d x}{2(1-x)}+\frac{d x}{2(x+1)}=d t$
$\frac{d x}{(1-x)}+\frac{d x}{(x+1)}=2 d t$
$\int \frac{1}{1-x} d x+\int \frac{1}{x+1} d x=2 \int 1 d t$
$-\ln (x-1)+\ln (x+1)=2 t+C_{1}$
$\ln \left(\frac{x+1}{x-1}\right)=2 t+C_{1}$
$\frac{x+1}{x-1}=C_{2} e^{2 t}$
$x+1=C_{2} e^{2 t}(x-1)$
$1+C_{2} e^{2 t}=\left(C_{2} e^{2 t}-1\right) x$
$x(t)=\frac{1+C_{2} e^{2 t}}{C_{2} e^{2 t}-1}$
at $t=0, x(t)=x(0)=\frac{1+C_{2}}{C_{2}-1}$
$x(0)\left(C_{2}-1\right)=1+C_{2}$
$C_{2}(x(0)-1)=1+x(0)$
$C_{2}=\frac{1+x(0)}{x(0)-1}$
$x(t)=\frac{1+\left(\frac{1+x(0)}{x(0)-1}\right) e^{2 t}}{\left(\frac{1+x(0)}{x(0)-1}\right) e^{2 t}-1}$
Sample 2

4. Question 1

a) Nonlinear Univariate Discrete Deterministic
b) $N^{*}=N^{*}\left(0.3+(1-\alpha) N^{*}\right)$
$N^{*}=0$ or
$1=\left(0.3+(1-\alpha) N^{*}\right)$
$0.7=(1-\alpha) N^{*}$
$N^{*}=\frac{0.7}{1-\alpha}$, assuming $\alpha \neq 1$
c) $f(N)=N(0.3+(1-\alpha) N)$
$f^{\prime}(N)=0.3+2(1-\alpha) N$
$f^{\prime}(0)=0.3$
$f^{\prime}\left(\frac{0.7}{1-\alpha}\right)=0.3+2 * 0.7=1.7$
Since $\left|f^{\prime}(0)\right|<1$ the fixed point 2 is stable
Since $\left|f^{\prime}\left(\frac{0.7}{1-\alpha}\right)\right|>1$ the fixed point $\frac{0.7}{1-\alpha}$ is unstable

5. Question 4

a) linear Univariate Continuous Deterministic

$$
\begin{aligned}
& \text { b) } 0=2 x \\
& x^{*}=0 \\
& \text { c) } f(x)=2 x \\
& f^{\prime}(x)=2 \\
& f^{\prime}(0)=2>0, \text { therefore the fixed point } 0 \text { is unstable } \\
& \text { d) } \frac{d x}{x}=2 d t \\
& \frac{d x}{x}=2 d t \\
& \int \frac{1}{x} d x=2 \int 1 d t \\
& \ln (x)=2 t+C_{1} \\
& x=C_{2} e^{2 t} \\
& x(t)=C_{2} e^{2 t}
\end{aligned}
$$

$$
x(0)=5=C_{2}
$$

$$
x(t)=5 e^{2 t}
$$

