
MATH 3MB3 FALL 2018 Univariate Sochastic 1

What we are now interested in is where different parameters or some
part of the model is allowed to have it’s value change over time, and
this change depends on some chance/probability. To start with we are
first going to review basic probability before looking at actual models.

1. Probability Introduction

Lets start with two events A, B. Then the probability of either A or
B occuring/happening is:
P (A ∪B) = P (A) + P (B)− P (A ∩B)
Where the last term is denoted as the joint probability of A and B,
which means both A and B have occurred.

If two events are deemed to be Mutually Exclusive, that means that
the probability of them both occurring at the same time is 0, so our
above equation would simplify to P (A ∪B) = P (A) + P (B)
A simple example of mutually exclusive events, is take a coin and let
A be the event where Heads comes up (face up) after flipping the coin.
Let B be the event where Tails comes up after flipping the coin. If you
only flip the coin once, you can’t have both heads and tails come up
at the same time.

The sum of the probabilities of all possibly outcomes of a set of events
is always equal to 1. This often becomes useful if one of the events is
hard to find/calculate, you can simply take 1 and subtract off all of the
other events to find that event.

The conditional probability of A given B is written as P(A—B) (which
reads as Probability of A such that B has occurred) is:

P (A|B) = P (A∩B)
B

The formula for the unconditional probability of A is:
P (A) = P (A|B) + P (A|notB)
Which simply states that the probability of A occurring is simply the
probability of A occurring given B has occurred plus the probability of
A occurring given that B has not occurred.
If P (A) = P (A|B), then this can be read as the probability of A is
equal to the probability of A given B has occurred. Which means that
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the probability of A occurring has nothing to do with B, meaning A is
independent of B. Another way to write this is that:
P (A ∩B) = P (A)P (B)

A Distribution is a law that defines the chance/odds/probability of
a certain event occurring. A Discrete − Distribution is defined by
a probabilitydistributionp(x) = P (X = x). This last part reads as
the probability of the random variable X being the value of x. For a
continuous distribution, a probability density function F (x) is used
instead and it is defined as follows:
f(x) = lim∆x→0

P (x<X<x+∆x)
∆x

Alternatively, one can use the cummulative distribution function
F (x), with F (x) = P (X ≤ x) for a discrete random variable X and
F (x) =

∫ x

−∞ f(x)dx
for a continuous variable. This function F(x) is often abbreviated as
CDF .

An important property of a distribution are its moments. The first
moment is the mean µ = x̄, also called the expected value, denoted as
E(X), of the random variable X, given by:
E(X) =

∑
x xP (x)

E(X) =
∫
xf(x)dx

For the discrete and continuous case respectively. Note that the ex-
pected value can be treated as a linear operator. Meaning that E(aX+
bY ) = E(aX) +E(bY ) = aE(X) + bE(Y ). However since it is a linear
operator, E(f(X)) 6= f(E(X)) if f is a nonlinear function.
The second moment is the variance denoted by γ = V (X) and definite
as:
V (X) = E((X − E(X))2)
which is equivalent to
V (X) = E(X2)− E(X)2

2. discrete example

A linear univariate discrete stochastic model can be written as:
N(t+ 1) = (1 + r)N(t)
Where N is our state variable, t is time, and r is a random parameter.
This means that at each time, r is chosen from a distribution law or
function. Note since r is random, this will also cause N to be random
as well.
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Assume that the population grows at a rate of rG in a good year and
declines at a rate of rB in a bad year, so at a minimum, rG > 0 and
rB < 0 and r is either rG or rB depending if it is a good or bad year. We
also have to know the rates/odds/probability of a good and bad year
occurring. Let p denote the probability of a good year, and let q be the
probability of denoting a bad year. Note that 0 ≤ p ≤ 1, 0 ≤ q ≤ 1,
and p+q = 1. So r is a Bernoulli variable that takes on the values of rg
with probability p, and rb with probability q = 1−p. Furthermore it is
assume that the probability of a good year or a bad year have nothing
to do with what happened in the previous year. Therefore p and q are
independent.

3. Finding the distribution

If we start the previous example with a population of N(0), then
we infer that N(1) = (1 + rG)N(0) with probability p and N(1) =
(1 + rB)N(0) with probability 1−p. Furthermore for N(2) we have the
following:
P (N(2) = (1 + rG)2N(0)) = p2

P (N(2) = (1 + rB)2N(0)) = q2

P (N(2) = (1 + rG)(1 + rB)N(0) =? Well we know that p + q = 1
therefore if we square both sides we get p2 +2pq+q = 1. Since the sum
of all probabilities at a certain time must add up to one the remaining
event happens with a probability of 2pq. It is easily seen that as we
go further and further out in time we are going to get more and more
equations. We need another way of looking at this. What if we wanted
to find the probability that after t years, we have had n good years,
and t-n bad years. We get the following:
P (N(t) = (1 + rG)n(1 + rB)t−nN(0)) =

(
t
n

)
pnqt−n

= t!
(t−n)!n!

pnqt−n

This defines a binomial distribution.

It is useful to calculate the expected value of N(t). The binomial dis-
tribution we are looking at has a t year time period, with p chance of
good, gives us an expected value of pt years of good, and similarly qt
years of bad. A direct consequence of this is that the expected value is
simply:
E(N(t)) = (1 + rG)pt(1 + rB)(1−p)tN(0)
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4. Fixed points and stability

Fixed points are found in the same way as for deterministic models:
by setting N(t) = N(t + 1) = N∗ and solving for N∗. Keep in mind
though that the parameters in the problem are no longer constant! The
example above is exceptional in its simplicity: the only fixed point is
N∗ = 0.

With regards to stability, the conclusions from deterministic models
hold but there is usually less room to make specific conclusions be-
cause of the presence of stochasticity. In the example looked at above,
stability is clearly guaranteed if 1 + rG and 1 + rB are both less than
1. If either is greater than 1, the state variable N(t) may grow in some
years. It is then necessary to determine if this growth is sufficiently
large and frequent as to offset the decrease in bad years. To do this,
we examine the expected value of N(t), which can be rewritten as
E(N(t)) = ((1 + rG)p(1 + rB)(1−p))tN(0)
It now follows that for stability we simply need (1+rG)p(1+rB)(1−p) <
1. There are two issues. First, there is the fact that the condition only
guarantees that the system approaches the fixed point, but not neces-
sarily that the convergence is monotonic. Second, it only guarantees
that the expected value approaches the fixed point. With some bad
luck, the dynamics exhibited by a single trial can differ significantly
from the one predicted by the expected value. The expected deviation
from the mean is quantified by the variance (which therefore is a useful
quantity to compute).

5. Numerical results

First lets pick some values. Let p = 0.2, q = 0.8, rG = 0.3 rB = −0.1,
and N(0) = 13. There are a bunch of different ways to look at how
to simulate this is Matlab. Since what you have may be much more
complicated, what you can do is something like the following:

p=0.2;

q=0.8;

rG=0.3;

rB=-0.1;

N(1)=13;

rng(1,’twister’); %This generates a seed value for a random number generator.

% What this means is if I pick the seed of 1, and ask for 10

% random numbers. I can then come back later, again have this

% line of code the asking for 10 random numbers will give me
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% the exact same random numbers. This basically helps and saves reproducibility

count(1)=1; %counter variable for plotting later on

for i=1:80

r1=rand; %This sets r1 to be a random value between 0 and 1

count(i+1)=i+1;

if r1>0.2

N(i+1)=(1+rB)*N(i)

else

N(i+1)=(1+rG)*N(i)

end

end

plot(count-1,N) %note this -1 is to keep the initial condition in the plot

If instead you wanted to do a bunch of simulations and to see what
the expected values are there would be a slight change

p=0.2;

q=0.8;

rG=0.3;

rB=-0.1;

simulations=5; %pick number of simulations

N(1,1:simulations)=13; %This now sets all simulation run initial conditions

rng(1,’twister’); %This generates a seed value for a random number generator.

% What this means is if I pick the seed of 1, and ask for 10

% random numbers. I can then come back later, again have this

% line of code the asking for 10 random numbers will give me

% the exact same random numbers. This basically helps and saves reproducibility

count(1)=1; %counter variable for plotting later on

for j=1:simulations

for i=1:80

r1=rand; %This sets r1 to be a random value between 0 and 1

count(i+1)=i+1;

if r1>0.2

N(i+1,j)=(1+rB)*N(i,j);

else

N(i+1,j)=(1+rG)*N(i,j);

end

end

end

E=sum(N.’)/j %.’ transposes the matrix, and sum takes the sum of the columns

% So this is one way to get a row sum out

plot(count-1,N,count-1,E) %does all the simulations and also puts the mean on the same graph
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Figure 1. Code from above this shows all 5 simulations
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Figure 2. Same as the above plot except this also has
the expected value on the graph as well
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