One type of multivariate stochastic model is the Markov chain. Although these discrete models are reminiscent of certain deterministic models, in the sense that we will define them by a simple matrix equation, an important difference is their interpretation in the framework of chance and probability. A Markov chain is a multivariate linear model of the form
$\overrightarrow{x_{t+1}}=T \overrightarrow{x_{t}}$
where T is an $\mathrm{n} \times \mathrm{n}$ matrix, t is time, and $\vec{x}$ is a vector of length n .

## 1. Introduction

Each component of the state vector $\vec{x}$ is associated with a certain state of the system. The numerical values of the n components of $\overrightarrow{x_{t}}$ reflect the probability of the system being in that particular state at time t . We thus require the components of $\overrightarrow{x_{t}}$ to lie between 0 and 1 and for the components to sum to 1 . Additionally, the matrix

$$
\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{n 1} \\
p_{12} & p_{22} & \cdots & p_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 n} & p_{2 n} & \cdots & p_{n n}
\end{array}\right]
$$

must have the columns adding up to 1 . Which means that for each i:
$\sum_{j=1}^{n} p_{i j=1}$
The matrix $T$ is called the transition matrix and its entries $p_{i j}$ represent the (conditional) probability of the system transitioning from state i to state j. Note that for all the Markov chain matrices, it is assumed that each move or each transition matrix does not change/vary based off the the previous moves. This means that each move is independent of past moves. This is called the Markov Property.

## 2. Explicit Solution

As before we have:
$\overrightarrow{x_{t}}=T^{t} \overrightarrow{x_{0}}$
Where $\overrightarrow{x_{0}}$ is the given initial condition. The catch is the calculation of $T^{t}$. Note that the power $t$ will be used many times throughout these notes, and never means the transpose. The eigenvalue approach, that we outlined before, still works.

## 3. Fixed Points

Because of the properties of the transition matrix, it is impossible to have an eigenvalue larger than 1. Furthermore the dominate eigenvalue will always be 1 . Because of this, the eigenvector(s) corresponding to the eigenvalue of 1 , is known as the stable equilibrium distribution of T. It is also called the Perron - Frobenius eigenvector.

## 4. Asymptotics

The limit as $t \rightarrow \infty$ is of particular interest, as it dictates the convergence of the initial condition $\overrightarrow{x_{0}}$ after a long period of time. In this case what we are looking for is:
$T^{t} \rightarrow L$ as $t \rightarrow \infty$
where L is an n x n matrix. This matrix is called the steady - state matrix. All of the entries are real numbers, and $L^{2}=L$, meaning that L is idempotent. Equilibrium states are necessarily eigenvectors of L with eigenvalue of 1 .

## 5. Absorbing states

A Markov Chain has absorbing states if the matrix T can be rearranged into the following form:
$\left[\begin{array}{ll}A & 0 \\ B & I\end{array}\right]$
where A and B are matrices, 0 is a zero matrix, and I is the identity matrix. The rearranging is achieved by relabelling of the states

Lets say that $A$ is an $(n-k) x(n-k)$ submatrix, which then makes $I$ the $k x k$ identity matrix. Then the components associated with the final k components of the state vector, are all absorbing states. They are left invariant in time by $T$ and absorb other states of the system through multiplication with the submatrix $B$.
One can show for a matrix $T$ of the block form that:
$T^{t}=\left[\begin{array}{cc}A^{t} & 0 \\ B\left(I-A^{t}\right)(I-A)^{-1} & I\end{array}\right]$
so the time-dependent solution is then:
$\overrightarrow{x_{t}}=\left[\begin{array}{cc}A^{t} & 0 \\ B\left(I-A^{t}\right)(I-A)^{-1} & I\end{array}\right] \overrightarrow{x_{0}}$
Furthermore because of the absorbing states we know that $A^{t} \rightarrow 0$ as $t \rightarrow \infty$ therefore:
$\overrightarrow{x_{t}}=\left[\begin{array}{cc}0 & 0 \\ B(I-A)^{-1} & I\end{array}\right] \overrightarrow{x_{0}}=L \overrightarrow{x_{0}}$
is the fixed point for the absorbing Markov Chain.
Note that every absorbing state represents an equilibrium but not vice versa. The matrix T may be free of zeros, which excludes the presence of absorbing states. However, T will always have 1 as an eigenvalue which implies it will always have an equilibrium.

## 6. Example with absorption

Say we are modelling the population size of a certain species. The population has three states: extinction (state 1), contraction (state 2), expansion (state 3 ). At $\mathrm{t}=0$, the probability that the population is in these three states is dictated by $\overrightarrow{x_{0}}=(0.01,0.14,0.85)$. The matrix governing state transitions is assumed to be
$T=\left[\begin{array}{ccc}1 & 0.05 & 0.01 \\ 0 & 0.7 & 0.19 \\ 0 & 0.25 & 0.8\end{array}\right]$
First few things to note. The sum of all columns do add up to exactly 1. The first column reveals that once a population becomes extinct, it stays extinct, so extinction is an absorbing state. The second column describes the chance of transitioning from contracting to extinct $\left(p_{21}=0.05\right)$, remaining in contraction $\left(p_{22}=0.7\right)$ and contracting to expanding ( $p_{23}=0.25$ ). The last column similarly defines these conditional probabilities in the case of an expanding population.

We wish to write the matrix T into block form. To this end, we relabel the states to be expansion (state 1), contraction (state 2), extinction (state 3). Then we have $\overrightarrow{x_{0}}=(0.85,0.14,0.01)$ and:
$T=\left[\begin{array}{ccc}0.8 & .25 & 0 \\ .19 & 0.7 & 0 \\ 0.01 & 0.05 & 1\end{array}\right]$
So $T=\left[\begin{array}{ll}A & 0 \\ B & I\end{array}\right]$
with
$A=\left[\begin{array}{cc}0.8 & 0.25 \\ .19 & .7\end{array}\right]$
$B=\left[\begin{array}{ll}0.01 & 0.05\end{array}\right]$
The extinct state is therefore an absorbing state of the system. The steady-state matrix can be computed by calculating $B(I-A)^{-1}=(1,1)$ Therefore

4
$L=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$
and therefore $x^{*}=(0,0,1)$. It is clear to see that no matter the initial condition, eventually the species all dies out and end up with extinction.

## 7. Example without absorption

Now lets modify that previous example slightly
$T=\left[\begin{array}{ccc}0.8 & .25 & 0.001 \\ .19 & 0.7 & .01 \\ 0.01 & 0.05 & .989\end{array}\right]$
We note that this matrix cannot be transformed into the earlier block form especially since it has no zero entries. The eigenvalues of T are: $1, .09631,0.5259$. The first eigenvalue is the one that corresponds to the equilibrium, while the later two vanish over time. The eigenvector corresponding to the eigenvalue of 1 is $(0.1601,0.1252,0.7147)$, which is the equilibrium state.

Furthermore if you use computer software to try to evaluate $T^{t}$ as $t \rightarrow \infty$, you end up with all the columns looking like the eigenvector corresponding to the eigenvalue of 1 .

