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One type of multivariate stochastic model is the Markov chain. Al-
though these discrete models are reminiscent of certain deterministic
models, in the sense that we will define them by a simple matrix equa-
tion, an important difference is their interpretation in the framework of
chance and probability. A Markov chain is a multivariate linear model
of the form
~xt+1 = T ~xt

where T is an n x n matrix, t is time, and ~x is a vector of length n.

1. Introduction

Each component of the state vector ~x is associated with a certain
state of the system. The numerical values of the n components of ~xt

reflect the probability of the system being in that particular state at
time t. We thus require the components of ~xt to lie between 0 and 1
and for the components to sum to 1. Additionally, the matrix
p11 p21 · · · pn1
p12 p22 · · · pn2
...

...
. . .

...
p1n p2n · · · pnn


must have the columns adding up to 1. Which means that for each i:∑n

j=1 pij=1

The matrix T is called the transition matrix and its entries pij repre-
sent the (conditional) probability of the system transitioning from state
i to state j. Note that for all the Markov chain matrices, it is assumed
that each move or each transition matrix does not change/vary based
off the the previous moves. This means that each move is independent
of past moves. This is called the Markov Property.

2. Explicit Solution

As before we have:
~xt = T t ~x0

Where ~x0 is the given initial condition. The catch is the calculation of
T t. Note that the power t will be used many times throughout these
notes, and never means the transpose. The eigenvalue approach, that
we outlined before, still works.
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3. Fixed Points

Because of the properties of the transition matrix, it is impossible to
have an eigenvalue larger than 1. Furthermore the dominate eigenvalue
will always be 1. Because of this, the eigenvector(s) corresponding to
the eigenvalue of 1, is known as the stable equilibrium distribution of
T. It is also called the Perron− Frobenius eigenvector.

4. Asymptotics

The limit as t → ∞ is of particular interest, as it dictates the con-
vergence of the initial condition ~x0 after a long period of time. In this
case what we are looking for is:
T t → L as t→∞
where L is an n x n matrix. This matrix is called the steady − state
matrix. All of the entries are real numbers, and L2 = L, meaning that
L is idempotent. Equilibrium states are necessarily eigenvectors of L
with eigenvalue of 1.

5. Absorbing states

A Markov Chain has absorbing states if the matrix T can be rear-
ranged into the following form:[
A 0
B I

]
where A and B are matrices, 0 is a zero matrix, and I is the identity
matrix. The rearranging is achieved by relabelling of the states

Lets say that A is an (n− k)x(n− k) submatrix, which then makes
I the kxk identity matrix. Then the components associated with the
final k components of the state vector, are all absorbing states. They
are left invariant in time by T and absorb other states of the system
through multiplication with the submatrix B.
One can show for a matrix T of the block form that:

T t =

[
At 0

B(I − At)(I − A)−1 I

]
so the time-dependent solution is then:

~xt =

[
At 0

B(I − At)(I − A)−1 I

]
~x0

Furthermore because of the absorbing states we know that At → 0 as
t→∞ therefore:

~xt =

[
0 0

B(I − A)−1 I

]
~x0 = L~x0
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is the fixed point for the absorbing Markov Chain.

Note that every absorbing state represents an equilibrium but not
vice versa. The matrix T may be free of zeros, which excludes the
presence of absorbing states. However, T will always have 1 as an
eigenvalue which implies it will always have an equilibrium.

6. Example with absorption

Say we are modelling the population size of a certain species. The
population has three states: extinction (state 1), contraction (state 2),
expansion (state 3). At t = 0, the probability that the population is
in these three states is dictated by ~x0 = (0.01, 0.14, 0.85). The matrix
governing state transitions is assumed to be

T =

1 0.05 0.01
0 0.7 0.19
0 0.25 0.8


First few things to note. The sum of all columns do add up to exactly
1. The first column reveals that once a population becomes extinct,
it stays extinct, so extinction is an absorbing state. The second col-
umn describes the chance of transitioning from contracting to extinct
(p21 = 0.05), remaining in contraction (p22 = 0.7) and contracting to
expanding (p23 = 0.25). The last column similarly defines these condi-
tional probabilities in the case of an expanding population.

We wish to write the matrix T into block form. To this end, we relabel
the states to be expansion (state 1), contraction (state 2), extinction
(state 3). Then we have ~x0 = (0.85, 0.14, 0.01) and:

T =

 0.8 .25 0
.19 0.7 0
0.01 0.05 1


So T =

[
A 0
B I

]
with

A =

[
0.8 0.25
.19 .7

]
B =

[
0.01 0.05

]
The extinct state is therefore an absorbing state of the system. The

steady-state matrix can be computed by calculating B(I−A)−1 = (1, 1)
Therefore
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L =

0 0 0
0 0 0
1 1 1


and therefore x∗ = (0, 0, 1). It is clear to see that no matter the initial
condition, eventually the species all dies out and end up with extinc-
tion.

7. Example without absorption

Now lets modify that previous example slightly

T =

 0.8 .25 0.001
.19 0.7 .01
0.01 0.05 .989


We note that this matrix cannot be transformed into the earlier block
form especially since it has no zero entries. The eigenvalues of T are:
1, .09631, 0.5259. The first eigenvalue is the one that corresponds to
the equilibrium, while the later two vanish over time. The eigenvector
corresponding to the eigenvalue of 1 is (0.1601, 0.1252, 0.7147), which
is the equilibrium state.

Furthermore if you use computer software to try to evaluate T t as
t → ∞, you end up with all the columns looking like the eigenvector
corresponding to the eigenvalue of 1.


	1. Introduction
	2. Explicit Solution
	3. Fixed Points
	4. Asymptotics
	5. Absorbing states
	6. Example with absorption
	7. Example without absorption

