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Determining the value of the eigenvalues:

−λ(sA − λ)− fsJ = 0

λ2 − λsA − fsJ = 0

λ =
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2

Using λ1 = λ+:
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Second row of expanded form:

sJv1 + sAv2 − λv2 = 0

v1 =
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√
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You can see that v1 is the same in both situations. (You don’t need to do that twice, I’m just demonstrat-

ing that they are the same). Now, set v2 = 1 and see that v1 =

√
s2A+4fsJ−sA

2sJ
. Therefore, the eigenvector

associated with λ+ is

(√
s2A+4fsJ−sA

2sJ
, 1

)
.

1


