

MATH 3MB3 FALL 2018 HOMEWORK 2
Due Monday October 15 at 11:59PM

Format your report using some form of word processing software (Word, Latex, OpenOffice, ...), export it to a PDF file and submit it via email to:

- Alexandra Bushby, bushbya@mcmaster.ca if your last name starts with A-G or if you are submitting using R
- Robert White, whitere@mcmaster.ca if your last name starts with a H-Z, or you plan on using Python, and you don't plan on using R

together with a file containing the code you used for your computer simulations.

Make sure that your email has the proper subject line and information from the outline.

QUESTION 1

Lets let A be the number of young adults in a population and E be the number of elderly people in the population. We assume that the birth rate for young adults is b , and the birth rate for elderly is 0. Furthermore we assume that survival rates for adults and elderly are s_A, s_E respectively. It is further assumed that if a young adult survives for the year they magically become elderly. Recall that all rates are always between 0 and 1.

- a) Find the eigenvalues
- b) Find the eigenvectors (do not simplify the complicated one)
- c) Use a) and b) to setup the explicit solution given initial values $A(0) = A_0$ and $E(0) = E_0$. Do NOT solve for C_1, C_2

For the rest of question 1) use computer software and set $s_A = \frac{1}{10}$, $s_E = \frac{1}{20}$, $b = \frac{1}{4}$, $A(0) = 50$, $E(0) = 20$:

- d) What is the explicit solution now?

- e) Calculate $A(10)$ and $E(10)$
- f) Describe what you expect to happen to A and E over time. Justify

using b), c), d), e).

g) Plot A and E as functions of time (at least till time 10), and describe their long term dynamics

1. QUESTION 2

Given the system $x' = x^2 - 2x - 3$.

- a) Classify the model
- b) Find the fixed points
- c) Find the stability of the fixed points
- d) Find an explicit solution of the model

For the following use computer software:

- e) Run three numerical experiments with initial conditions of ($N(0) = -5$, $N(0) = 1$, $N(0) = 10$) and use the explicit formula with $t = 1, 10, 100$ to determine the long term dynamics of each initial condition.
- f) Do your results in part e) agree with part b), c)? Explain!