Format your report using some form of word processing software (Word, Latex, OpenOffice, ...), export it to a PDF file and submit it via email to:

- Alexandra Bushby, bushbya@mcmaster.ca if your last name starts with A-G or if you are submitting using R
- Robert White, whitere@mcmaster.ca if your last name starts with a H-Z, or you plan on using Python, and you don't plan on using R
together with a file containing the code you used for your computer simulations.
Make sure that your email has the proper subject line and information from the outline.

Question 1

Lets let A be the number of young adults in a population and E be the number of elderly people in the population. We assume that the birth rate for young adults is b , and the birth rate for elderly is 0 . Furthermore we assume that survival rates for adults and elderly are s_{A}, s_{E} respectively. It is further assumed that if a young adult survives for the year they magically become elderly. Recall that all rates are always between 0 and 1 .
a) Find the eigenvalues
b) Find the eigenvectors (do not simplify the complicated one)
c) Use a) and b) to setup the explicit solution given initial values $A(0)=A_{0}$ and $E(0)=E_{0}$. Do NOT solve for C_{1}, C_{2}

For the rest of question 1) use computer software and set $s_{A}=\frac{1}{10}$, $s_{E}=\frac{1}{20}, b=\frac{1}{4}, A(0)=50, E(0)=20$:
d) What is the explicit solution now?
e) Calculate $A(10)$ and $E(10)$
f) Describe what you expect to happen to A and E over time. Justify
using b), c), d), e).
g) Plot A and E as functions of time (at least till time 10), and describe their long term dynamics

1. QUESTION 2

Given the system $x^{\prime}=x^{2}-2 x-3$.
a) Classify the model
b) Find the fixed points
c) Find the stability of the fixed points
d) Find an explicit solution of the model

For the following use computer software:
e) Run three numerical experiments with initial conditions of ($\mathrm{N}(0)=-$ $5, \mathrm{~N}(0)=1, \mathrm{~N}(0)=10)$ and use the explicit formula with $t=1,10,100$ to determine the long term dynamics of each initial condition.
f) Do your results in part e) agree with part b), c)? Explain!

