MATH 3MB3 FALL 2018 LINEAR MULTIVARIATE DISCRETE DETERMINISTIC

The basic model is now $\vec{x}(t+1)=A \vec{x}(t)$. Here $\vec{x}(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$ is a vector with n components, so that we have n variables to solve for, and A is an n by n matrix.

1. Population Example

As an example, lets let J be the number of juveniles in a population and A be the number of adults. We assume that the birth rate for juveniles is 0 , and the birth rate for adults is f. We assume that the survival rate for juveniles is s_{J} and the survival rate for adults is s_{A}. We also assume that on surviving one year, juveniles become adults. This is then a coupled equation (since A and J depend on each other and can be written a few different ways:

$$
\begin{aligned}
& J(t+1)=f A(t) \\
& A(t+1)=s_{J} J(t)+s_{A} A(t)
\end{aligned}
$$

$$
\left[\begin{array}{l}
J(t+1) \\
A(t+1)
\end{array}\right]=\left[\begin{array}{cc}
0 & f \\
s_{J} & s_{A}
\end{array}\right]\left[\begin{array}{l}
J(t) \\
A(t)
\end{array}\right]
$$

or you can combined the two equations to get
$A(t+1)=s_{J} f A(t-1)+s_{A} A(t)$

2. FIXED POINT(S)

We say that \vec{x} is a fixed point if $\vec{x}=A \vec{x}$, or equivalently $0=(A-I) \vec{x}$, where I is the identity matrix that is the same size as the square matrix A. The null space of $A-I$ therefore contains all the fixed points. If $A-I$ is invertible, we only have $\vec{x}^{*}=0$. If $A-I$ is not invertible, there is an $n-r$ dimensional space of fixed points, r being the rank of that matrix. Remember that a matrix is invertible if its determinant is not zero. For the juvenile-adult model, the determinant of $A-I$ is $1-s_{A}-f s_{J}$. This quantity may be zero depending on the value of the constants f, s_{A} and s_{J}. In what follows, we assume it is not zero so that the only fixed point is $A^{*}=0=J^{*}$

3. Time-dependent solution

There are two different approaches to finding the solution of a model of this form. 1) Directly attacking the problem. 2) Using the eigenvalues of the matrix A and some linear algebra.

4. The direct approach

Like with out earlier models, try to apply the recursion a few times and see if you can find a pattern.
$\vec{x}(1)=A \vec{x}(0)$
$\vec{x}(2)=A \vec{x}(1)=A^{2} \vec{x}(0)$
$\vec{x}(3)=A \vec{x}(2)=A^{2} \vec{x}(1)=A^{3} \vec{x}(0)$
Therefore:
$\vec{x}(t)=A^{t} \vec{x}(0)$
Note that actually figuring out what A^{t} is in a question can be tricky however if a computer is available it is pretty easy to figure out.

5. EIGENVALUE APPROACH

So a better way to process is to diagonalize the matrix A, which can be done by writing it as $S D S^{-1}$, where S is an n by n matrix whose columns are the eigenvectors of A and D is a matrix with the eigenvalues of A on its diagonal and zeroes everywhere else. Subbing this into the matrix power equation one finds.
$\vec{x}(t)=A^{t} \vec{x}(0)=\left(S D S^{-1}\right)^{t} \vec{x}(0)$
$=\left(S D S^{-1}\right)\left(S D S^{-1}\right) \ldots\left(S D S^{-1}\right) \vec{x}(0)$
$=\left(S D^{t} S^{-1}\right) \vec{x}(0)$
The term D^{t} is quite simple to find since D is diagonal, hence the power of t is applied to the diagonal elements of D . For example:
$\mathrm{D}=\left[\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right] D^{t}=\left[\begin{array}{cc}d_{1}^{t} & 0 \\ 0 & d_{2}^{t}\end{array}\right]$

6. CHANGE OF VARIABLES

An even neater trick is to view the pervious equation as $S^{-1} \vec{x}(t)=$ $D^{t} S^{-1} \vec{x}(0)$ and let $\vec{y}(t)=S^{-1} \vec{x}(t)$. Then the equation turns into $\vec{y}(t)=$ $D^{t} \vec{y}(0)$, which is the same as:
$y_{1}(t)=d_{1}^{t} y_{1}(0)$
$y_{2}(t)=d_{2}^{t} y_{2}(0)$
\vdots
$y_{n}(t)=d_{n}^{t} y_{n}(0)$
Now the we have to solution we just have to go back to solving $\vec{x}(t)$ which is done by setting $\vec{x}(t)=S \vec{y}(t)$.
7. STABILITY

The real numbers $y_{1}(t), y_{2}(t), \ldots, y_{n}(t)$ are the coordinates of the vector $\vec{x}(t)$ in the basis of eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ of A , meaning that $\vec{x}(t)=y_{1}(0) d_{1}^{t} \overrightarrow{v_{1}}+y_{2}(0) d_{2}^{t} \overrightarrow{v_{2}}+\ldots+y_{n}(0) d_{n}^{t} \overrightarrow{v_{n}}$

This expression reveals the importance of the dominant eigenvalue (i.e. eigenvalue with largest absolute value): all terms except for the dominant become negligible as time increases because all the eigenvalues d_{i} appear as d_{i}^{t}

The dominant eigenvalue consequently determines stability: if the absolute value of the dominant eigenvalue is greater than 1, a fixed point is unstable. If it is smaller than 1 , it is stable. Things become interesting when the absolute value of the dominant eigenvalue equals 1 , or when it appears twice.

8. BaCK to the population example

We are going to do this by the eigenvalue approach which requires us to solve the equation $\operatorname{det}(A-D I)=0$. For this model using the quadratic formula we get
$d_{t}=\frac{s_{A} \pm \sqrt{s_{A}^{2}+4 s_{j} f}}{2}$
Which then requires us to solve the following:
$\left[\begin{array}{cc}0 & f \\ s_{J} & s_{A}\end{array}\right]\left[\begin{array}{c}v_{2 t-1} \\ v_{2 t}\end{array}\right]=d_{t}\left[\begin{array}{c}v_{2 t-1} \\ v_{2 t}\end{array}\right]$
to find the eigenvectors. For the dominant eigenvalue, we get:
$f v_{2}=\frac{s_{A}+\sqrt{s_{A}^{2}+4 s_{j} f}}{2} v_{1}$
$s_{J} v_{1}+s_{A} v_{2}=\frac{s_{A}+\sqrt{s_{A}^{2}+4 s_{j} f}}{2} v_{2}$
and for the non dominant eigenvalue we get:
$f v_{4}=\frac{s_{A}-\sqrt{s_{A}^{2}+4 s_{j} f}}{2} v_{3}$
$s_{J} v_{3}+s_{A} v_{2}=\frac{s_{A}-\sqrt{s_{A}^{2}+4 s_{j} f}}{2} v_{4}$
Using the shortcut from the section above we can also conclude that: $\vec{x}(t)=c_{1} d_{1}^{t} \overrightarrow{v_{1}}+c_{2} d_{2}^{t} \overrightarrow{v_{2}}$
Where c_{1} and c_{2} can be determined from the initial condition $\vec{x}(0)$, and $\overrightarrow{v_{1}}=\left(v_{1}, v_{2}\right)$ and $\overrightarrow{v_{2}}=\left(v_{3}, v_{4}\right)$.
9. AFFINE MODEL

The multivariate affine model has the form $\vec{x}(t+1)=A \vec{x}(t)+\vec{b}$. For fixed points solve $\vec{x}^{*}=A \vec{x}^{*}+\vec{b}$. If $A-I$ is invertible, then the solution is $\vec{x}^{*}=-(A-I)^{-1} \vec{b}$. The stability conditions are the same as in the linear case described above.

