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The basic model is now
d~x
dt

= ~f(~x)

where ~f is a vector-valued function of a vector-valued state variable
~x. As before we find fixed points by setting d~x

dt
=0 and solving, though

depending on the model this can become tricky.

1. Fixed Points

dM

dt
= aM(1−M)(N − 1

2
)

dN

dt
= bN(1−N)(M − 1

2
)

So first we replace the left hand side by 0’s.

0 = aM(1−M)(N − 1

2
)

0 = bN(1−N)(M − 1

2
)

Now we find solutions to the first equation (M = 0,M = 1, N = 1
2
)

and place each of those into the second equation to get the following:
0 = bN(1−N)(−1

2
)

0 = bN(1−N)(1
2
)

0 = b
2
(1
2
)(M − 1

2
)

Which gives us the following set of fixed points:
(0, 0), (0, 1), (1, 0), (1, 1), (1

2
, 1
2
)

Note it is possible for a nonlinear model to have infinitely many fixed
points, or no fixed points.

2. Stability

Like we have seen before, a fixed point is stable iff the real part of
all of the eigenvalues are less than 0. Looking at the example above
our Jacobian matrix looks like:
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J=

[
a(N − 1

2
)− 2aM(N − 1

2
) aM(1−M)

bN(1−N) b(M − 1
2
)− 2bN(M − 1

2
)

]
Which can be simplified to:[
a(N − 1

2
)(1− 2M) aM(1−M)

bN(1−N) b(1− 2N)(M − 1
2
)

]
Now lets look at this Jacobian under each of the sets of fixed points

J(0,0)=

[−a
2

0
0 −b

2

]
This gives us eigenvalues of −a

2
and −b

2
. The origin/fixed point will be

stable if both a and b are positive.

J(1,0)=

[
a
2

0
0 b

2

]
This gives us eigenvalues of a

2
and b

2
. (1,0) will be stable if both a and

b are negative.

J(0,1)=

[
a
2

0
0 b

2

]
This gives us eigenvalues of a

2
and b

2
. (0,1) will be stable if both a and

b are negative.
Note in this case it is allowable to have different fixed points stable at
the same time as there will exist a separatrix (dividing region) under
which certain initial conditions will go to one while certain other initial
conditions will go to the other fixed point.

J(1
2
, 1
2
) =

[
0 a

4
b
4

0

]
Note we can’t directly pull off the eigenvalues for this one therefore
we will have to calculate them. The characteristic polynomial that we

get will be λ2 − ab
16

= 0 which gives us eigenvalues of ±
√
ab
4

. Note in
this case if both a and b have the same sign, then these eigenvalues
will have opposite signs, and the fixed point will be unstable. In the
case where a and b have difference signs, then we end up with complex
eigenvalues that have a zero real part, and stability has to be analyzed
by a computer.

3. Time dependent solution

The results of a numerical simulation of the solution close to the
fixed point M∗ = N∗ = 1

2
are displayed in Figure 1. In close proximity

to the fixed point, the nonlinear problem is well approximated by the
linearization (i.e. the Jacobian). Further away from the fixed point, the
shape of the orbit in the figure can not be predicted from the Jacobian;
it is due to nonlinear effects.
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4. classical Lotka-Volterra model

The Lotka-Volterra is probably the most well known example of a
nonlinear multivariate continuous model. It describes the evolution of
two populations in time: x represents prey and y predators. The sys-
tem governing x(t) and y(t) is:

dx

dt
= ax− bxy = x(a− by)

dy

dt
= cxy − dy = y(cx− d)

where a,b,c,d are all positive constants. There are two fixed points for
this system. An extinction equilibria at (0,0) and a coexistence equi-
libria at (d

c
, b
a
). The Jacobian for this system is:

J=

[
a− by −bx
cy cx− d

]
J(0,0)=

[
a 0
0 −d

]
giving us eigenvalues of a and −d. Since all the parameters are positive
constants a > 0, therefore this fixed point will be unstable. Since this
is 2 dimensional what is happening is that the fixed point is unstable
along the x axis (eigenvalue of a) and stable along the y axis (eigen-
value of -d). This type of fixed point is called a saddle point.

J(d
c
, b
a
) =

[
0 −bd

c
ac
b

0

]
The eigenvalues of this matrix are ±i

√
ad, both purely imaginary,

meaning that we expect orbits close to the fixed point to be circular.
For initial conditions further away from the equilibria we still expect
orbits to be circular, however due to the nonlinearity, they may be
deformed into ellipses for example. An example of this is displayed in
figure 2.
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Figure 1. The example is solved numerically for a=2,
b=-3, in order to understand the coexistence equilibria
(1
2
, 1
2
). The equilibria is marked with a black dot, and the

initial condition with a red dot. The initial condition for
these three parts are: a) (0.51,0.49) b) (0.8,0.2) c)
(0.95,0.05)
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Figure 2. The Lotka-Volterra model is solved numer-
ically, for a=2, b=3, c=4, d=5. The equilibria is again
marked with a black dot, and the initial conditions are
marked with a red dot. To show the direction of these
orbits, the numerical simulation was halted before the
orbit completed, to show the counterclockwise direciton
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