MATH3MB3 Exam Review

For every question below:
a) Classify the model.
b) Find the fixed point(s) of the model.
c) Determine the stability of the fixed point(s).
1.

$$
\begin{array}{r}
S(t+1)=S(t)+m[N-S(t)]-S(t)\left[1-e^{-\beta I(t)}\right] \\
I(t+1)=I(t)+S(t)\left[1-e^{-\beta I(t)}\right]-[m+\gamma] I(t)
\end{array}
$$

2. $N(t+1)-N(t)=R_{\max } N \frac{1-N(t)}{N_{\max }}$
3. $N(t+2)=N(t+1)+3 N(t)$
d) Determine the time dependent solution if $N(0)=0$ and $N(1)=1$.
4.

$$
\begin{gathered}
\frac{d S(t)}{d t}=-\mathcal{R}_{0} S I \\
\frac{d I(t)}{d t}=\mathcal{R}_{0} S I-I
\end{gathered}
$$

5.

$$
\begin{array}{r}
P(t+1)=\gamma \alpha \sigma P(t)+\sigma \beta S(t) \\
S(t+1)=\gamma \sigma(1-\alpha) P(t)
\end{array}
$$

6. $\frac{d x}{d t}=a-b x$
d) Find the general solution to the model.
7. $\frac{d x}{d t}=r N\left(1-\frac{N}{K}\right)$
d) Find the general solution to the model.
8.

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1}+2 x_{2} \\
\frac{d x_{2}}{d t} & =3 x_{1}+2 x_{2}
\end{aligned}
$$

