Question 1

Consider the following population model:
$\frac{d x}{d t}=r x\left(1-e^{b x}\right)$
a) Classify the model
b) Find the fixed point(s)
c) Find the stability of these fixed point(s)
d) Assuming that $x(0)=x_{0}$, what happens to the population over time?

Question 2

$$
T=\left[\begin{array}{ccc}
.9 & .15 & .25 \\
.075 & .8 & .25 \\
.025 & .05 & .5
\end{array}\right]
$$

a) Classify the model
b) Find the fixed points of the model
c) Find the steady-state matrix L.

Question 3

Consider the following population model:
$\frac{d x}{d t}=r x\left(1-\frac{y}{k}-\frac{a x}{k}\right)$
$\frac{d y}{d t}=r y\left(1-\frac{x}{k}\right)$
a) Classify the model
b) Find the fixed points
c) Determine the stability of each fixed point
d) Describe the solution near each fixed point

Question 4

Consider the following System
$N(t+1)=\left(1+\frac{1}{r}\right) N(t)$
Where r is a Bernoulli random variable taking one of the two values
r_{1}, r_{2} with probability
$P[r=r 1]=p$ and $P[r=r 2]=1-p$
a) Classify the model
b) Find the fixed point(s)
c) Find the stability of the fixed point(s)

Now assume that $\mathrm{r} 1=5, \mathrm{r} 2=2$ and $\mathrm{p}=0.1$. d) Find the fixed point(s)
e) Find the stability of the fixed point(s)

Question 5

Consider the system:
$\frac{d x}{d t}=-(x-y)(1-x-y)$ $\frac{d y}{d t}=x(2+y)$
a) Classify the model
b) Find the fixed points
c) Determine the stability of each fixed point
d) Describe the solution near each fixed point

Question 6

Consider the system:
$N(t+1)=\frac{a N(t)}{1+b N(t)}$
a) Classify the model
b) Find the fixed points
c) Determine the stability of each fixed point

