
MATH 3MB3 FALL 2018 Linear Multivariate Continuous
Deterministic

The basic model is now
d~x
dt

= A~x
where ~x = ~x(t) is an n dimensional vector and A is a n by n matrix.
As before we find fixed points by setting d~x

dt
=0 and solving. However

stability now gets more complicated. One important part of this is we
now allow complex eigenvalues.

1. The Matrix Exponential

The solution to our basic model in this section is often written as
~x(t) = ~x(0)eAt, which is known as a matrix exponential. The only way
we know how to calculate a matrix exponential is by series expansion
of the exponential function:

eAx = 1 + Ax+ (Ax)2

2
+ (Ax)3

3!
+ · · ·

so when the exponent is now a matrix instead we get:

eAt = I + At+ (At)2

2
+ (At)3

3!
+ · · ·

where I is the n by n identity matrix. Furthermore if we assume that
A can be diagonalized (A = SDS−1), we get the following:

eSDS
−1t = I + SDS−1t+ (SDS−1t)2

2
+ (SDS−1t)3

3!
+ · · ·

with some simplification then becomes:

eSDS
−1t = S(I +Dt+ (Dt)2

2
+ (Dt)3

3!
+ · · · )S−1

Just like before, taking the power of a diagonalized matrix is the the
power of the elements of that matrix, so everything inside of the brack-
ets becomes easy to compute.

2. eigenvalue approach

In order to solve for ~x, we end up mimicking what we did with mul-
tivariate discrete models. First we diagonalize A, but writing it as
SDS−1, where the columns of S are the eigenvectors ~v1, ~v2, · · · ~vn of A,
and D is simply a diagonal matrix, where the elementals on the diag-
onal are the eigenvalues d1, d2, · · · dn of A. We now get a new form for
the explicit solution which looks as follows:
~x(t) = c1e

d1t ~v1 + c2e
d2t ~v2 + · · · + cne

dnt ~vn
Where the c′is are the constant coefficients which are then solved using
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the given initial conditions.

3. A complex example

We start by looking at a simple two dimensional example.

A(t)=

[
0 5
−5 6

]
This can be expanded out into the following 2 dimensional system:
dx1
dt

= 5x2
dx2
dt

= −5x1 + 6x2
To figure out the fixed point of the system, we simply note that det(A) =
−15 since this value isn’t 0, A is invertible, and the only fixed point is
the point (0,0). To find the eigenvalues of A we look at λI −A (or you
could look at A− λI) which is:

(λI − A(t)) =

[
λ −5
5 λ− 6

]
To find the eigenvalue of this we now look at det(λI − A) = 0
(λ)(λ− 6) + 25 = 0
λ2 − 6λ+ 25 = 0
λi = 6±

√
36−100
2

λi = 3 ± 4i
Where i is the imaginary number satisfying i2 = −1. Note if the entries
of the original matrix A are real, and if you get a complex eigenvalue,
you are guaranteed to get it’s complex conjugate, and the exact same
thing happens for the eigenvector. i.e if d1 = c+ di is an eigenvalue of
A, then d2 = c − di is an eigenvalue of A as well. If v1 = a + bi is an
eigenvalue of A, then v2 = a− bi is also an eigenvalue of A. Note this
will also makes the ci’s complex conjugates as well

Now going back to our explicit solution the first term has ed1t which
becomes e(3+4i)t. Now using Euler’s identity we now get:
e(3+4i)t = e3t(cos(4t) + isin(4t)) = e3tcis(4t)
Similarly:
e(3−4i)t = e3t(cos(4t) − isin(4t))
This is due to the fact that cos(−x) = cos(x) and sin(−x) = −sin(x)
Therefore we have:
x(t) = c1(e

3tcis(4t))~v1 + c2(e
3t(cos(4t) − isin(4t)))~v2

=e3t(cos(4t)(c1 ~v1 + c2 ~v2) + isin(4t)(c1 ~v1 − c2 ~v2))

Let ~a = Re(~v1) = Re(~v2) and ~b = Im(~v1) = −Im(~v2)
and let c3 = Re(c1) = Re(c2) and c4 = Im(c1) = −Im(c2)
Then we have:
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x(t)=e3t(cos(4t)((c3 + ic4)(~a+ i~b) + (c3 − ic4)(~a− i~b)) + isin(4t)((c3 +

ic4)(~a+ i~b) + (−c3 + ic4)(~a− i~b))

=e3t(cos(4t)(2c3~a− 2c4~b) + sin(4t)(−2c3~b− 2c4~a))
Now if we let c5 = 2c3 and c6 = −2c4 then we get:

x(t)=e3t(c5(cos(4t)~a− sin(4t)~b) + c6(sin(4t)~a+ cos(4t)~b))
Where c5 and c6 can be solved from the initial conditions

4. general case

If we now let our eigenvalue be λ+ iµ and it’s eigenvector a+bi then
the solution is:
x(t)=eλt(c1(cos(µt)~a− sin(µt)~b) + c2(sin(µt)~a+ cos(µt)~b))
where we have simply reset the coefficients to a lower number. To
summarize, the explicit solution is found by first finding the eigenvalues
d1 and d2. Then their real and imaginary parts λ and µ respectively.
Next, find the eigenvectors ~v1 and ~v2, and their real and imaginary parts

~a and ~b respectively. Then compose the solution from the expression
above. If an initial condition is given, use it to determine the arbitrary
constants c1 and c2.

5. stability

Now that we actually have an explicit solution, the stability is straight
forward. Since this is an m dimensional system, the system itself will
be stable iff all eigenvalues have a negative real part. That means that
λ < 0 for stability. This has nothing to do with the dominate eigen-
value like before, and needs every eigenvector to have a negative real
part. If a single eigenvalue has a positive real part then the fixed point
is unstable.
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