Question 1

Consider the following population model:
$\frac{d x}{d t}=r x\left(1-e^{b x}\right)$
a) Classify the model
b) Find the fixed point(s)
c) Find the stability of these fixed point(s)
d) Assuming that $x(0)=x_{0}$, what happens to the population over time?

Answer:
a) Nonlinear Univariate Continuous Deterministic
b) $0=r x\left(1-e^{b x}\right)$. Therefore $x^{*}=0$
c) $J=r-r e^{b x}-b r x e^{b x}$
$J(0)=r-r=0$ therefor linearization fails.
Looking at a phase diagram. If $x>0$ then $1-e^{b x}<0$ therefore 0 is stable if $r>0$, unstable if $r<0$. Since this is a population model you don't have to look at 0 from the left.
d) Population declines to 0 .

Question 2

$$
T=\left[\begin{array}{ccc}
.9 & .15 & .25 \\
.075 & .8 & .25 \\
.025 & .05 & .5
\end{array}\right]
$$

a) Classify the model
b) Find the fixed points of the model
c) Find the steady-state matrix L.

Answer:
a) Linear Multivariate Discrete Stochastic (Discrete since it's a Markov Chain)
b) We know that we have one eigenvalue that is 1 , so check for it's corresponding eigenvector.
$T-I_{3}=\left[\begin{array}{ccc}-.1 & .15 & .25 \\ .075 & -.2 & .25 \\ .025 & .05 & -.5\end{array}\right]$
row reduce this matrix to get: $\left[\begin{array}{ccc}1 & 0 & -10 \\ 0 & 1 & -5 \\ 0 & 0 & 0\end{array}\right]$
Therefor our eigenvector is $(10,5,1)$ and we want the entries to be a probability so they have to add up to 1 .
Therefore the eigenvector we want is $\left(\frac{10}{16}, \frac{5}{16}, \frac{1}{16}\right)$.
c) Using b) the steady-state matrix L is:
$T=\left[\begin{array}{ccc}\frac{10}{16} & \frac{10}{16} & \frac{10}{16} \\ \frac{5}{16} & \frac{5}{16} & \frac{5}{16} \\ \frac{1}{16} & \frac{1}{16} & \frac{1}{16}\end{array}\right]$

Question 3

Consider the following population model:
$\frac{d x}{d t}=r x\left(1-\frac{y}{k}-\frac{a x}{k}\right)$
$\frac{d y}{d t}=r y\left(1-\frac{x}{k}\right)$
a) Classify the model
b) Find the fixed points
c) Determine the stability of each fixed point
d) If $\mathrm{r}=1, \mathrm{a}=.5, \mathrm{k}=1$ describe the solution near each fixed point

Answer:
a) Nonlinear Multivariate Continuous Deterministic
b) $0=r x\left(1-\frac{y}{k}-\frac{a x}{k}\right)$
$0=r y\left(1-\frac{x}{k}\right)$
The fixed points are $(0,0),\left(\frac{k}{a}, 0\right),(k, k(1-a))$
c) Note you could remove the r since it does nothing for stability.
$J=\left[\begin{array}{cc}r-\frac{r y}{k}-\frac{2 r a x}{k} & \frac{-r x}{k} \\ \frac{-r y}{k} & r-\frac{r x}{k}\end{array}\right]$
$J(0,0)=\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]$
$J\left(\frac{k}{a}, 0\right)=\left[\begin{array}{cc}-r & \frac{-r}{a} \\ 0 & \frac{a r-r}{a}\end{array}\right]$
$J(k, k(1-a))=\left[\begin{array}{cc}-r a & -r \\ r(a-1) & 0\end{array}\right]$
$(0,0)$ is stable if $r<0$
$\left(\frac{k}{a}, 0\right)$ is stable if $r>0$ and $0<a<1$
$(k, k(1-a))$ is stable if the trace is negative and the determinant is positive, so $a>0, r>0, a>1$, therefore $a>1$ and $r>0$.
d) $(0,0)$ Trace $=2$ Det $=1$, therefore Trace $^{2}-4$ Det $=0$, therefore nearby the fixed point is a degenerate unstable node. (unstable node would
earn full marks as well).
$(2,0)$ Trace $=-2$ Det $=-1(-1)=1$ therefore Trace $^{2}-4$ Det $=0$, therefore nearby the fixed point is a degenerate stable node. (stable node would earn full marks as well).
$(1, .5)$ Trace=-. 5 Det=-. 5 therefore since Det <0, nearby the fixed point is a saddle.

Question 4

Consider the following System
$N(t+1)=\left(1+\frac{1}{r}\right) N(t)$
Where r is a Bernoulli random variable taking one of the two values r_{1}, r_{2} with probability
$P[r=r 1]=p$ and $P[r=r 2]=1-p$
a) Classify the model
b) Find the fixed point(s)
c) Find the stability of the fixed point(s)

Now assume that $r 1=-5, r 2=2$ and $p=0.1$.
d) Find the fixed point(s)
e) Find the stability of the fixed point(s)

Answer:
a) Linear Univariate Discrete Stochastic
b) Let $N(t+1)=N(t)=N^{*}$ then $0=\frac{1}{r} N^{*}$ then since r is a stochastic variable and isn't infinity, $N^{*}=0$ is the fixed point.
c) $E(N(t))=\left(\left(1+\frac{1}{r 1}\right)^{p}\left(1+\frac{1}{r 2}\right)^{1-p}\right)^{t} N(0)$

Therefore 0 will be stable if $\left(\left(1+\frac{1}{r 1}\right)^{p} *\left(1+\frac{1}{r 2}\right)^{1-p}\right)<1$
d) Still 0
e) $\left(1+\frac{1}{-5}\right)^{1}\left(1+\frac{1}{2}\right) \cdot 9=.8^{1} 1 \cdot 5^{9}>1$ (You can look at this to the 10 th power, and note it as $.81 .5^{9}$ which is way bigger than 1).
Therefore the fixed point is unstable.

Question 5

Consider the system:
$\frac{d x}{d t}=-(x-y)(1-x-y)$
$\frac{d y}{d t}=x(2+y)$
a) Classify the model
b) Find the fixed points
c) Determine the stability of each fixed point
d) Describe the solution near each fixed point

Answer:
a) Nonlinear Multivariate Continuous Deterministic
b) $0=-(x-y)(1-x-y)$ $0=x(2+y)$
Fixed points are $(0,0),(0,1),(-2,-2),(3,-2)$
c) $J=\left[\begin{array}{cc}2 x-1 & 1-2 y \\ 2+y & x\end{array}\right]$
$J(0,0)=\left[\begin{array}{cc}-1 & 1 \\ 2 & 0\end{array}\right]$
$J(0,1)=\left[\begin{array}{cc}-1 & -1 \\ 3 & 0\end{array}\right]$
$J(-2,-2)=\left[\begin{array}{cc}-5 & 5 \\ 0 & -2\end{array}\right]$
$J(3,-2)=\left[\begin{array}{ll}5 & 5 \\ 0 & 3\end{array}\right]$
$(0,0)$ has Trace <0 and Det <0 therefore unstable
$(0,1)$ has Trace <0 and Det >0 therefore stable
$(-2,-2)$ has Trace <0 and Det >0 therefore stable
$(3,-2)$ has Trace >0 and Det >0 therefore unstable
d) $(0,0)$ has Det <0 therefore unstable saddle near the fixed point $(0,1)$ has Trace $=-1$ and Det $=3$ so Trace $^{2}-4$ Det $=-11<0$ therefore stable spiral near the fixed point
$(-2,-2)$ has Trace $=-7$ and Det $=10$ so Trace ${ }^{2}-4$ Det $=9>0$ therefore stable node near the fixed point
$(3,-2)$ has Trace $=8$ and Det $=15$ so Trace ${ }^{2}-4$ Det $=4>0$ therefore unstable node near the fixed point

Question 6

Consider the system:
$N(t+1)=\frac{a N(t)}{1+b N(t)}$
a) Classify the model
b) Find the fixed points
c) Determine the stability of each fixed point

Answer:
a) Nonlinear Univariate Discrete Deterministic
b) Let $N(t)=N(t+1)=N^{*}$ then $N^{*}=0$ or $1=\frac{a}{1+b N^{*}}$. Therefore $N^{*}=0$ or $\frac{a-1}{b}$
c) $f(N)=\frac{a N}{1+b N}$

$$
\begin{aligned}
& f^{\prime}(N)=a(b N+1)^{2} \\
& f^{\prime}(0)=a \\
& f^{\prime}\left(\frac{a-1}{b}\right)=\frac{1}{a} \\
& 0 \text { is stable if }|a|<1 \\
& \frac{a-1}{b} \text { is stable if }|a|>1
\end{aligned}
$$

