
Improper Integrals 

  assumed [ , ] is of finite length and  is continuous.
b

a
f x a b f   What if [a,∞) or f is not 

continuous?  These are improper integrals. 

Basically, you find the integral as before, except you will have to find a limit at the end, if it 

exists. 
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 ∞ is not a number so this is definitely an improper integral. 
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What does this really mean? 

It states that as a increases in value the integral gets closer and closer to the number 1. 

As an illustration 
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A more difficult improper integral to recognize is a type II improper integral, with a 

discontinuity at an interior point. 

Example 2:  Find 
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Solution: 

 There is no ∞ symbol to tip you off that the integral is improper.  However, the function 

is discontinuous at x = 1. 
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 We will attempt to find these integrals separately.  If any one of these  limits does not 

exists we are done, the original integral does not exist. 
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Example 3: Find the area of the infinite region that lies under the curve 
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Example 4:  Evaluate, if it exists, 
2

2

0
lnx xdx  

Solution: 
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Type I and type II are the two types of improper integrals we will study.  However, we must now 

discuss the Comparison Test.  In this section you are not asked to find the integral you are only 

to determine whether the integral exists or does not exist.  The method is very similar to the limit 

Squeeze Theorem you encountered in calculus 1500. 

 

We will restrict ourselves to only integrals which have a positive value, if they exist.  The 

strategy is as follows: 
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if our integral is between 0 and another number then our integral is a number.  Whereas, if our 

integral is greater than ∞ than its is also gigantic. 
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The two most common integrals we use for comparison are the p-integrals and the exponential 

function integral. 

 

  



p-integral test 
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A more concise way of stating the p-integral test is: 
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[Note: There is nothing sacred about the number 1.  The key values are 0 and ∞. 

 Hence, a can be any positive number.] 



 

The second very common integral used for comparison is:  
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Example 1:  Use the comparison test to determine whether 
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[Note: We have not found the value of the integral.  We have just determined that the value 

exists.] 

 

Example 2:  Use the comparison test to determine whether 
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 [ Note: At x = 0 there is no problem since 
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Example 3:  Use the comparison test to determine whether 
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 converges or diverges. 

Solution: 

 There is a problem at both ends since the denominator is 0 for x = 0. 
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In the previous example, you should notice, that it is very important which integral you choose 

for comparison. Concluding that 
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Homework: 

Use the comparison test to determine whether the integral is convergent or divergent. 
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Solutions:  Be sure to try answering the question fully yourself before checking  the solutions 

below. 
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