L'Hopital's Rule

Key Previous Knowledge:

1. Fact: $e^{\ln y} = y$

2. Logarithmic Differentiation

Find
$$\frac{dy}{dx}$$
 if $y = (\sin x)^x$

Key first step was to take the logarithm of both side.

Hence, $\ln y = x \ln(sinx)$ etc.

Form One:

If
$$f(a) = g(a) = 0$$
 and $f'(a)$ and $g'(a)$ exist with $g'(a) \neq 0$
then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

Examples:

Find: (a)
$$\lim_{x \to 0} \frac{3x - \sin x}{x}$$
 (b) $\lim_{x \to 0} \frac{\sqrt{1 + x - 1}}{x}$

Algebraic Justification:

Method: Work backwards from f'(a) and g'(a)

$$\frac{f'(a)}{g'(a)} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$
$$= \lim_{x \to a} \frac{f(x) - 0}{g(x) - 0} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

Graphical Argument:

Zoom in on the graphs of f and g at a. Since f'(a) and g'(a) exists the graphs of f and g, near a, appear to be straight lines. (Local Linearity)

"graph"

If x is <u>very near</u> a then $\frac{f(x)}{g(x)} = \frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}} = \frac{m_f}{m_g}$

As $x \to a$, m_f and m_g approach f'(a) and g'(a). $\therefore \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{m_f}{m_g} = \frac{f'(a)}{g'(a)}$

Question: What happens if g'(a) = 0?

If f'(a) is also 0 we have a more general L'Hopital Rule. Form 2:

> If *f* and *g* are differentiable and f(a) = g(a) = 0 then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$ provided this limit exists.

Example:

$$\lim_{x \to 0} \frac{x^5}{x^3} \qquad \left[\frac{0}{0}\right]$$
$$\left[\underset{=}{\text{H}}\right] \lim_{x \to 0} \frac{5x^4}{3x^2} \left[\underset{=}{\text{H}}\right] \lim_{x \to 0} \frac{20x^3}{6x} \left[\underset{=}{\text{H}}\right] \lim_{x \to 0} \frac{60x^2}{6} = \lim_{x \to 0} 10x^2 = 0$$

Second Basic indeterminant form is $\frac{\infty}{\infty}$. Actually, a form of $\frac{0}{0}$ since $\frac{\infty}{\infty} \approx \frac{1}{0} \approx \frac{0}{0}$. Example:

$$\lim_{x \to \infty} \frac{x}{e^x} \qquad \left[\frac{\infty}{\infty}\right]$$
$$\begin{bmatrix}H\\=\\\\x \to \infty\\e^x\end{bmatrix} = 0$$

Indeterminant forms: (We do not know the value, nor if it even exists.) $**\underline{Basic}$: (All other forms must be changed to one of these before applying L'Hopital's Rule)

Example	Form
$\lim_{x \to 0} \frac{x}{\sin x}$	$\frac{0}{0}$
$\lim_{x\to\infty}\frac{e^x}{x}$	$\frac{\infty}{\infty}$

Forms requiring some algebraic manipulation to change to one of the Basic forms.

Example	Form	Strategy	New Form
$\lim_{x\to\infty} x\sin\frac{1}{x}$	$\infty \times 0$	$= \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}}$	$\frac{0}{0}$
$\lim_{x\to (\frac{\pi}{2})^{-}} (\sec x - \tan x)$	$\infty - \infty$	$= \lim_{x \to (\frac{\pi}{2})^{-}} \left(\frac{1 - \sin x}{\cos x} \right)$	$\frac{0}{0}$

Forms requiring the following steps: (Logarithmic)

- 1. Let *y* equal the expression without the limit..
- 2. Take *ln* of both sides.
- 3. Find the limit.
- 4. Change back to y. Thus answering the question

$$\frac{\text{Example}}{\lim x^{\sqrt{x}}}$$

 $x \rightarrow 0^+$

Following the steps Form Let $y = x^{\sqrt{x}}$ 0^{0} $\ln y = \sqrt{x} \ln x$ $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \sqrt{x} \ln x \left[0 \times \infty \right]$ $= \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{\sqrt{x}}} \qquad \left[\frac{\infty}{\infty}\right]$ $\begin{bmatrix} H \\ = \end{bmatrix} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{2}x^{-\frac{3}{2}}} = \lim_{x \to 0^+} -2x^{\frac{1}{2}} = 0$ $\therefore \lim_{x \to 0^+} x^{\sqrt{x}} = \lim_{x \to 0^+} y = \lim_{x \to 0^+} e^{\ln y} = e^{\lim_{x \to 0^+} \ln y} = e^0 = 1$ $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^x$ ∞_0 Same method as above $\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x$ 1^{∞} Same method as above

This last example is an alternate definition of the number e and is used to change the compound interest formula $A = P(1 + \frac{i}{n})^{nt}$ into the continuous compounding formual $A = Pe^{rt}$.

Not all forms are indeterminant! We know the values For example

$\infty + \infty = \infty$	$5 \times \infty = \infty$	$\frac{0}{\infty} = 0$
$\frac{3}{\infty} = 0$	$\frac{\infty}{3} = \infty$	$(1.1)^{\infty} = \infty$
$(0.9)^{\infty} = 0$		

Find each limit, if it exists.

(a)
$$\lim_{x \to 1} \frac{x^3 - 5x^2 + 6x - 2}{x^5 - 4x^4 + 7x - 9x + 5}$$

(c)
$$\lim_{x \to 0} \frac{\sin x}{x^3}$$

(e)
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$

(g)
$$\lim_{x\to 0} \frac{\tan x - x}{x^3}$$

(b)
$$\lim_{x\to\infty}\frac{1-x^3}{4x^3+x+1}$$

(d)
$$\lim_{x\to\infty}\frac{e^x}{x^{100}}$$

(f)
$$\lim_{x\to 0^+} x^x$$

(h)
$$\lim_{x\to\infty} \left(2+\frac{3}{x}\right)^{5x}$$