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For each fixed value of x, the series is a series of constants that converges or diverges.  A power 
series may converge for some values of x and diverges for other values of x. 
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Theorem. 
 For any power series in x, exactly one of the following is true: 
 (a)  The series converges only for x = 0. 
 (b)  The series converges for all

( ) [ ] [ ) ( ], , , , , , ,R R R R R R o r R R− − − −

 real values of x. 
 (c)  There is a positive number R such the series converges for some finite interval  
  . 

The number R is called the radius of convergence of the power series.  By agreement the radius 
of convergence in (a) is R = 0 and R = ∞ in (b).  The interval of convergence 

( ),−∞ ∞

of a power series is 
the interval that consists of all values of x for which the series converges.  The interval of 
convergence in (a) is just a single point 0, in (b) it is and in (c) it is one of the four 

intervals listed, depending what happens at the endpoints. 

How do we find the radius and interval of convergence of a power series? 

Examples. 
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therefore convergent when x < 1.  We must investigate convergence at the endpoints. 



If  x = 1 we have
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therefore, the interval of convergence is ( )1,1− with radius of convergence R = 1. 
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Therefore, the series is absolutely convergent, and therefore convergent for all real 
numbers. The interval of convergence is ( ),−∞ ∞ and the radius of convergence is R = ∞ . 
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If 0x ≠ then the ratio test for absolute convergence yields 
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nonzero values of x.  The interval of convergence is x ={0} and the radius of convergence 
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Therefore, the series converges absolutely when  
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< 1  or x <3.  Testing the endpoints yields: 
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alternating harmonic series. 
Therefore, The interval of convergence is ( ]3,3− and the radius of convergence is 3R = . 

  



If a is a constant and if x in the power series 
Power Series in x – a. 
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This is called a power series in x  −a
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Examples: 

   ( a power series in 1x − .) 
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The Power Series Theorem can be extended to x – a. 

  For any power series in x – a, exactly one of the following is true: 
  (a)  The series converges only for x = a. 
  (b)  The series converges for all

( ) [ ] [ ) ( ], , , , , , ,a R a R a R a R a R a R o r a R a R− + − + − + − +

 real values of x. 
  (c)  There is a positive number R such the series converges for some finite   
   interval . 

The power series in x – a has its interval of convergence 
Examples: 

always centered at x = a.   

Find the interval of convergence and the radius of convergence of the power series. 
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Solution: 
(a)  Using the ratio test we have 
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.  Therefore, the series is absolutely convergent, and therefore convergent if  
5x − < 1or −1<x−5<1,  or 4<x<6. Checking the endpoints yields: 



If x = 6 then the series becomes 2 2 2 2
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If x = 4 then the series becomes ( )
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absolutely and hence the series converges. 
Therefore, the given series has an interval of convergence of [4,6] with a radius of 
convergence of R = 1. 
 
(b)  Using the ratio test we have 
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Therefore, the series is absolutely convergent, and therefore convergent if  
1x − < 1or −1<x−1<1,  or 0<x<2. Checking the endpoints yields: 

If x = 2 then the series becomes 
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Therefore, the given series has an interval of convergence of [ )0,2  with a radius of 

convergence of R = 1. 

  



 
 

In the previous work we started with a power series and talked about its sum 
(convergence).  Now we shift our viewpoint.  We start with a function and attempt to 
find its power series representation.  

Representation of Functions as Power Series 

In this section we look at  2 3
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 a function as 

a sum of a power series. 
Be careful,  For  1,x >  
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  The template 1
1−

 will be very important in this section. 

Example 

 Express the function ( ) 4
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 as the sum of a power series and find the 

 interval of convergence. 
Solution: 
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 This geometric series converges when 4 41, or 1, or  1.x x x< < <  

 Therefore the interval of convergence is (−1,1). 
 
Example: 

 Find a series representing the function ( ) 2
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 Be careful of the sign 
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 Furthermore,  
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Example: 

  Find series representing the function ( ) 2
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x

=
−
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  Make sure you rearrange to form the template 1
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The series converges when 1,   or  3
3
x x< <  with interval of convergence (−3,3). 
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Answer:  The function is not equal to the infinite series outside

The idea is similar to any other function.  A formula is 

 the interval of 
 convergence.  The number 4 is outside of (−3,3). 

not
 

 a function without its domain! 

Example: 
 We can have extra x’s in the function.  Find a series representing the function 
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By changing the initial value of n we can write  
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with interval of convergence (−3,3).

  



Integration and differentiation of functions leads to integration and differentiation of 
power series,  term-by-term.  In such cases the interval of convergence may change at the 
endpoints.  Therefore, in most of these questions you are asked to state the radius

 

 of 
convergence, which is preserved under integration and differentiation. 

 Some expressions that we have encountered similar to our template 1
1−

are: 
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Using integration and differentiation we can arrive at some functions and new series. 

Example: 

 Express ( )
( )2

1
1

f x
x

=
−

as a power series.  State its radius of convergence. 

Solution: 

 We can use the geometric series  2 3
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Example: 
 Express ( ) ( )ln 1f x x= + as a power series.  State its radius of convergence. 

Solution: 

 For positive values of x ( ) ( ) 1ln 1
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 alternating geometric series 2 31 ...x x x− + − + . 



Therefore, 
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 But  f(0) = ln(1) =0/  Hence C = 0  Therefore, 
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Example: 
 Express ( ) ( )1tanf x x−= as a power series.  State its radius of convergence. 
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 With radius of convergence, R =1 since 1  yields 1x x− < < . 

[A useful recall:  If  
   n represents all the integers  
   then 2n represents all even integers 
   while 2n+1 represents all odd integers.] 

A last example uses partial fractions. 

Example: 

 Express ( ) 2
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as a power series.  State its interval of convergence. 

Solution 
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Solving for A and B 
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Therefore,  
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 We represented f as the sum of two geometric series;  the first converges on 1 1,
2 2

 − 
 

and 

the second converges on ( )1,1− .  Hence the sum function converges on 1 1,
2 2

 − 
 

 

[  Functions can be added, as long as we pay attention to their domains.  Similarly, the series, 
which are equivalent to these special functions, can also be added as long as we pay attention to 
their intervals of convergence. ] 

 


