Reiman Sums and the Definite Integral

Useful Formulae: (pg. 383)

$$1+2+3+\dots+n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

 $1^{2}+2^{2}+3^{2}+\dots+n^{2} = \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$
 $1^{3}+2^{3}+3^{3}+\dots+n^{3} = \sum_{i=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$
 $\underbrace{1+1+1+\dots+1}_{n} = \sum_{i=1}^{n} 1 = n(1) = n$

Example: Evaluate the Riemann sum for f(x) = 4x, $0 \le x \le 2$ with four

subintervals, taking the sample points to be(a) left endpoints(b) right endpoints

Solution:

"graph"

(a) The width of each subinterval is
$$\frac{2}{4} = \frac{1}{2}$$

 $L_4 = \frac{1}{2}f(0) + \frac{1}{2}f(\frac{1}{2}) + \frac{1}{2}f(1) + \frac{1}{2}f(\frac{3}{2})$
 $L_4 = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 4 + \frac{1}{2} \cdot 6$
 $L_4 = 0 + 1 + 2 + 3 = 6$

(b) The width of each subinterval is
$$\frac{2}{4} = \frac{1}{2}$$

 $L_4 = \frac{1}{2}f\left(\frac{1}{2}\right) + \frac{1}{2}f\left(1\right) + \frac{1}{2}f\left(\frac{3}{2}\right) + \frac{1}{2}f\left(2\right)$
 $L_4 = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 4 + \frac{1}{2} \cdot 6 + \frac{1}{2} \cdot 8$
 $L_4 = 1 + 2 + 3 + 4 = 1 \quad 0$

In Calculus 1500 you used the definition of a derivative,

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to find derivatives of various functions. Some of these were fairly time consuming. Similarly, we use the definition of a definite integral to find definite integrals. This process is also time consuming!

Definition:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Example: Use the <u>definition</u> of a definite integral to find $\int_0^2 4x \, dx$ Solution: (Using left endpoints) "sketch"

$\int_{0}^{2} 4x dx = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$	Interval	<u>L.E.</u>
$\sum_{i=1}^{n} \left(2(i-1) \right) 2$		

$$= \lim_{n \to \infty} \sum_{i=1}^{n} 4 \left(0 + \frac{2(i-1)}{n} \right) \frac{2}{n}$$
 1 0

$$= \lim_{n \to \infty} \frac{16}{n^2} \sum_{i=1}^{n} (i-1) \qquad 2 \qquad \frac{2}{n}$$
$$= \lim_{n \to \infty} \frac{16}{n} \left[\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 \right] \qquad 3 \qquad \frac{4}{n}$$

$$= \lim_{n \to \infty} \frac{16}{n^2} \left[\sum_{i=1}^n i - \sum_{i=1}^n 1 \right] \qquad 3 \qquad \frac{4}{n}$$

$$\lim_{n \to \infty} \frac{16}{n(n+1)} \qquad (2(i-1))$$

$$= \lim_{n \to \infty} \frac{16}{n^2} \left[\frac{n^2 - n}{2} \right]$$

$$= \lim_{n \to \infty} \frac{16}{n^2} \left[\frac{n^2 - n}{2} \right]$$

$$= \lim_{n \to \infty} \frac{8n^2 - 8n}{n^2} = \lim_{n \to \infty} \left(8 - \frac{8}{n} \right) = 8$$
and
$$x_i^* = 0 + \frac{2(i - 1)}{n}$$

If we had used the right endpoints we would obtain the same results as illustrated below.

$\int_{0}^{2} 4x dx = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$	Interval	<u>R.E.</u>
$= \lim_{n \to \infty} \sum_{i=1}^{n} 4\left(0 + \frac{2i}{n}\right) \frac{2}{n}$	1	$\frac{2}{n}$
$=\lim_{n\to\infty}\frac{16}{n^2}\sum_{i=1}^n(i)$	2	$\frac{4}{n}$
$= \lim_{n \to \infty} \frac{16}{n^2} \left[\frac{n(n+1)}{2} \right]$	3	$\frac{6}{n}$
$= \lim_{n \to \infty} \frac{8}{n^2} \cdot \left(n^2 + n\right)$	i	$\frac{2i}{n}$
$=\lim_{n\to\infty}\frac{8n^2+8n}{n^2}$	$\therefore \Delta x = \frac{2}{n}$	
$= \lim_{n \to \infty} \left(8 + \frac{8}{n} \right) = 8$	and $x_i^* = 0 +$	$\frac{2i}{n}$

Let's change the starting point.

Example: Use the <u>definition</u> of a definite integral to find $\int_{1}^{2} 4x \, dx$ Solution: (Using right endpoints.)

"sketch"			
$\int_{1}^{2} 4x dx = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$	Interval	<u>R.E.</u>	
$= \lim_{n \to \infty} \sum_{i=1}^{n} 4\left(1 + \frac{i}{n}\right) \frac{1}{n}$	1	$1 + \frac{1}{n}$	
$= \lim_{n \to \infty} \frac{4}{n} \sum_{i=1}^{n} \left(1 + \frac{i}{n} \right)$	2	$1 + \frac{2}{n}$	
$= \lim_{n \to \infty} \frac{4}{n} \left[\sum_{i=1}^{n} 1 + \frac{1}{n} \sum_{i=1}^{n} i \right]$	3	$1 + \frac{3}{n}$	
$= \lim_{n \to \infty} \frac{4}{n} \cdot \left(n + \left(\frac{1}{n}\right) \frac{n(n+1)}{2} \right)$	i	$1 + \frac{i}{n}$	
$=\lim_{n\to\infty}\left[4+\frac{4n+4}{2n}\right]$	$\therefore \Delta x = \frac{1}{n}$		
$=\lim_{n\to\infty}(4+2)=6$	and $x_i^* = 1 + \frac{i}{n}$		

Let's change the function.

Example: Use the <u>definition</u> of a definite integral to find $\int_0^5 (25 - x^2) dx$ Solution: (Using right endpoints.)

$$\int_{0}^{5} (25 - x^{2}) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \qquad \text{Interval} \qquad \underline{\text{R.E.}}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(25 - \left(\frac{5i}{n}\right)^{2}\right) \frac{5}{n} \qquad 1 \qquad \frac{5}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(25 - \frac{25}{n^{2}} \sum_{i=1}^{n} i^{2} \right) \qquad 2 \qquad \frac{10}{n}$$

$$= \lim_{n \to \infty} \frac{5}{n} \left[25n - \frac{25}{n^{2}} \cdot \frac{n(n+1)(2n+1)}{6} \right] \qquad 3 \qquad \frac{15}{n}$$

$$= \lim_{n \to \infty} \left[125 - \frac{125}{6} \cdot \frac{2n^{3} + 3n^{2} + 1n}{n^{3}} \right] \qquad i \qquad \frac{5i}{n}$$

$$= \lim_{n \to \infty} \left[125 - \frac{250}{6} - \frac{375}{6n} - \frac{125}{6n^{2}} \right] \qquad \therefore \Delta x = \frac{5}{n}$$

$$= 125 - \frac{250}{6} = \frac{250}{3} \qquad \text{and } x_{i}^{*} = 0 + \frac{5i}{n}$$

One last change.

Example: Use the <u>definition</u> of a definite integral to find $\int_{2}^{5} (25 - x^2) dx$ Solution: (Using right endpoints.) "sketch"

$$\int_{2}^{5} (25 - x^{2}) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \qquad \therefore \Delta x = \frac{3}{n} \text{ and } x_{i}^{*} = 2 + \frac{3i}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(25 - \left(2 + \frac{3i}{n}\right)^{2} \right) \frac{3}{n}$$

$$= \lim_{n \to \infty} \frac{3}{n} \left(\sum_{i=1}^{n} 25 - \sum_{i=1}^{n} \left(4 + \frac{12i}{n} + \frac{9i^{2}}{n^{2}}\right) \right)$$

$$= \lim_{n \to \infty} \frac{3}{n} \left[25n - 4n - \frac{12}{n} \sum_{i=1}^{n} i - \frac{9}{n^{2}} \sum_{i=1}^{n} i^{2} \right]$$

$$= \lim_{n \to \infty} \frac{3}{n} \left[21n - \frac{12}{n} \cdot \frac{n(n+1)}{2} - \frac{9}{n^{2}} \cdot \frac{n(n+1)(2n+1)}{6} \right]$$

$$= \lim_{n \to \infty} \left[63 - \frac{18n + 18}{n} - \frac{9}{2} \cdot \frac{2n^{2} + 3n + 1}{n^{2}} \right]$$

$$= 63 - 18 - 9 = 36$$

Some questions that are used to test your knowledge of the definition of a definite integral, but not so time consuming, follow.

Example: Use the <u>definition</u> of a definite integral to state $\int_{1}^{5} (x^3 - \ln x) dx$ as a limit of a Rieman sum. Solution: One solution is: The length of each subinterval is $\frac{5-1}{n} = \frac{4}{n}$ Using right endpoints, the ith argument is: $1 + \frac{4i}{n}$

$$\therefore \int_{1}^{5} \left(x^{3} - \ln x \right) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(1 + \frac{4i}{n} \right)^{3} - \ln \left(1 + \frac{4i}{n} \right) \right] \frac{4}{n}$$

Example: Write $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{\pi}{n} + e^{\frac{2\pi}{n}} \right) \frac{\pi}{n}$ as a definite integral. Evaluate this

definite integral.

Solution:

$$\Delta x = \frac{\pi}{n} \text{ and the right endpoint of ith subinterval is } 0+\frac{\pi}{n}$$

$$\therefore \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{\pi}{n} + e^{\frac{2\pi}{x}}\right) \frac{\pi}{n} = \int_{0}^{\pi} \left(x + e^{2x}\right) dx$$
$$= \frac{x^{2}}{2} + \frac{e^{2x}}{2} \bigg|_{0}^{\pi} = \frac{\pi^{2}}{2} + \frac{e^{2\pi}}{2} - \left(0 + \frac{1}{2}\right)$$
$$= \frac{e^{2\pi} + \pi^{2} - 1}{2}$$

Example: (Variation of #68 pg. 393) Express $\lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(3 + \frac{2i}{n}\right)^2}$ as a definite

integral.

Solution: One solution is:

$$\Delta x = \frac{2}{n} \text{ and the right endpoint of the ith subinterval is } 3 + \frac{2i}{n}$$
$$\therefore \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(3 + \frac{2i}{n}\right)^2} = \int_3^5 \frac{1}{1 + x^2} dx$$