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Reiman Sums and the Definite Integral 
Useful Formulae
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Example:  Evaluate the Riemann sum for ( ) 4 , 0 2f x x x= ≤ ≤ with four   
  subintervals,  taking the sample points to be 
  (a) left endpoints 
  (b)  right endpoints 
Solution: 
  “graph” 
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( ) ( )4
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In Calculus 1500 you used the definition
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 to find derivatives of various functions.  Some of 

these were fairly time consuming.  Similarly, we use the definition of a definite 
integral to find definite integrals.  This process is also time consuming! 
 
Definition: 

 ( ) ( )*

1
lim

nb

ia n i
f x dx f x x

→∞
=

= ∆∑∫  



 41 

Example:  Use the definition
2

0
4x dx∫ of a definite integral to find  

Solution:  (Using left endpoints) “sketch” 
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If we had used the right endpoints we would obtain the same results as illustrated 
below. 
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Let’s change the starting point. 

Example:  Use the definition
2

1
4x dx∫ of a definite integral to find  

Solution:  ( Using right endpoints. ) 
 
   “sketch” 
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Let’s change the function. 

Example:  Use the definition ( )5 2

0
25 x dx−∫ of a definite integral to find  

Solution:  ( Using right endpoints. ) 
 
   “sketch” 
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One last change. 

Example:  Use the definition ( )5 2

2
25 x dx−∫ of a definite integral to find  

Solution:  ( Using right endpoints. ) 
  “sketch” 
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Some questions that are used to test your knowledge of the definition of a definite 
integral, but not so time consuming, follow. 
 

Example:  Use the definition ( )5 3

1
lnx x dx−∫ of a definite integral to state as a  

  limit of a Rieman sum. 
Solution: One solution is: 

 The length of each subinterval is 5 1 4
n n
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Example:  Write 
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+∑  as a definite integral.  Evaluate this  

  definite integral. 
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Example:  (Variation of #68 pg. 393 )  Express 2
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Solution: One solution is: 
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