
Sketch and state the domain of each of the following functions. 
Sequences 
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Sketch the above functions if the domains are restricted to the Natural Numbers. 
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Definition
An 

: 
infinite sequence

I.e.  The function 
 is a function whose domain is the set of positive integers. 
( ) 2f x x= becomes an infinite sequence if its domain is the set of positive 

integers.  It is usually denoted by 2
na n=  to indicate the natural umber domain. 

 
Notation: 
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Note:  Using 1, 3, 5, ... to denote the odd positive integers is BAD since the sequence could also 
denote the sequence 1, 3, 5, 11, 13,15, 21, 23, 25,...  
 
Preferred notation for the odd positive integers is { } { }1

2 1 2 1n or n ∞− −  



Examples: 
Write the first five terms of each sequence. 
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Examples: 
Find an explicit nth term definition for each infinite sequence.  i.e. Find a formula for the general 
term na  of the sequence.  ( Assume the most obvious pattern continues.) 

1 2 3 4( ) , , , ,. . .
2 3 4 5
2 4 6 8( ) , , , ,...
5 8 11 14
2 3 4 5( ) , , , ,...
3 9 27 81

4 3 8( ) 1, , , ,...
5 5 17
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Limits of Sequences 

How do the graphs of the following two sequences differ? 
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“Definition” 

 
lim provided the values of  get closer and closer to L as 

[ graphically means advancing far to the right. ]
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We say the sequence { }nc  converges { }nc to L and  is called a convergent sequence
 

. 

[ Note:  Only a finite number of the terms of { }nc may be outside the “lane” determined by 

( ),L Lε ε+ − for any value of ε. 
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If the number L does not exist then { }nc diverges and is called a divergent sequence
 

. 

This definition is a special case of the definition of a limit of a function where the domain is the 
set of natural numbers.  Thus we have following theorem. 
 

 If 
Theorem 
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Example: 

 Since 2lim 1
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Is the converse true?  i.e. If ( )f x is the related function to { }na  and lim nn

a
→∞

 exists must ( )lim
x

f x
→∞

also exist? NO!   
Look at the function ( ) ( )sin 2f x xπ= . 
 
We can partition even further to get a very useful theorem. 
  



Definition: 
 A subsequence { }na of a sequence is a sequence whose terms are terms of the original 

sequence { }na  arranged in the same order. 

i.e. A subsequence of a sequence { }na has the form 
1 2 3
, , ,...n n na a a  where 1 2 3 ...n n n< < < and is 

often denoted by{ }kna   

 
For example: 

The sequence 1 1 1 1 1 1, , ,... is a subsequence of the sequence , , ,...
2 4 8 2 3 4

 

 
Theorem
 Every subsequence of a convergent sequence converges, and its limit is the limit of the 
original sequence. 

: 

 
Example: 

 Since 1
2n

 
 
 

is a subsequence of 1
n

 
 
 

and 1lim 0
n n→∞

= it follows that 1lim
2n n→∞

is also 0. 

 
An important use of this theorem is if we have at least two convergent subsequences of an 
original sequence and they converge to two different limits, then the original sequence must 
diverge. 
 
Example: 
  Consider the sequence 1, 0, 1, 0, 1, 0, .... 
 Its subsequence 1, 1, 1, ... obviously converges to 1 and the subsequence 0, 0, 0, ... obviously 
converges to 0.  However, the original sequence is divergent since it oscillates form 1 to 0. 
 
A method to show that a sequence is divergent all you have to do is produce two subsequences of 
this sequence which converge to two different limits. 
 
The Limit Laws of functions also hold for convergent sequences. 
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Examples: 
   Find the limit of each sequence, if the limit exists 
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Limits with Radicals (Techniques) 

1. Find 
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Some other useful theorems: 
Theorem: ( Limit Squeeze Theorem) 
If 0 0 for  for a positive integer ,  and lim lim , then limn n n n n nn n n

a c b n n a a L b c L
→∞ →∞ →∞

≤ ≤ ≥ = = = . 

 
Theorem: 
If lim 0,  then lim 0.n nn n
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Theorem: 
If  lim nn

a L
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= and the function f is continuous at L, then ( ) ( )lim nn
f a f L
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= . 

 
Example: 

 Find lim sin
n n

π
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 [ Since ( ) sinf x x= is a continuous function you can use the above theorem.] 

  



 
Sometimes you are interested in establishing merely the existence of a limit. 
 

Definitions: 
Monotonic Sequences 

(a) A sequence { }na is increasing 1  for all 1.n na a n+< ≥ if  

(b) A sequence { }na is decreasing 1  for all 1.n na a n+> ≥ if  

(c) A sequence { }na is non-decreasing 1  for all 1.n na a n+≤ ≥ if  

(d) A sequence { }na is non-increasing 1  for all 1.n na a n+≥ ≥ if  
[Note: (c) and (d) are useful if some of the terms are equal.  For example: 1, 1, 2, 3, 5, ...] 
 
If a sequence satisfies any one of the above properties the sequence is said to be monotonic
 

. 

 
Method
To prove that a sequence is monotonic you must show that 

: 
1n na a+ − is positive, or negative. 

[Note:  Using the related function f to the sequence { }na show that ( ) ( )0 or 0f x f x′ ′> < .] 
 
Example: 

 Show that 
2
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is monotonic. 

[Hint:  It is a good idea to write the first few terms of the sequence to decide whether it is 
increasing or decreasing.] 
 

 
Bounded 

Definitions: 
(a) U is an upper bound { }na of iff.  for all 1.na U n≤ ≥  

(b) V is an lower bound { }na of iff.  for all 1.nV a n≤ ≥  
A bounded sequence
 

 is a sequence which has a lower and an upper bound. 

To show that a number U is an upper bound show that 
Method 

0 for all 1.nU a n− ≥ ≥  
To show that a number V is an lower bound show that 0 for all 1.nV a n− ≤ ≥  
 
Example: 

Show that 
1

n
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is bounded. 

  



Example: 

Determine whether 3
2 7
n
n
+ 

 + 
 is monotonic, bounded, and has a limit. 

 
This last example leads us to a very important theorem. 
 
Theorem: 
 A bounded monotonic sequence has a limit. 
[  This is an existence theorem.  It does not tell us what the limit is, just that it exists. ] 
[Note:  This theorem is often used with recursively defined sequences.]  
 
Why is boundedness necessary? 
{ }2n is monotonic but not bounded and { }2lim

n
n

→∞
= ∞ . 

 
Why must the sequence be monotonic? 

( ){ }11 n+− is bounded with U = 1 and V = −1 but it is not monotonic.   

 
Question: 
Can you give an example of a sequence that is monotonic, bounded above and below, but its 
limit does not exist?  
 

 


