
A. Since sequences are functions with domains restricted to the natural numbers the function 
limit theorems hold for convergent sequence.  Therefore we use the function techniques 
with sequences. 
 

Sequences  (addition to other notes) 

 Do the following sequences { }na converge or diverge?  Justify your answer. 

( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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− −
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B.  Does the sequence ( )1 cos 2
n

n n
a

n
π+

=  converge or diverge?  Does the associated 

function ( ) ( )1 cos 2x x
f x

x
π+

= converge or diverge? 

C. A theorem which is useful in discussing the convergence, or divergence, of some 
sequences is: 
 A sequences converges to a limit L iff its subsequences also converge to L. 
 ( This theorem is often used to show the divergence of a sequence.) 
Example:  
 The sequence ( )1 1,1, 1,1, 1,1, 1,1,...n

na = − = − − − − diverges since the subsequence 

of the odd numbered terms: 1, 1, 1, 1,...− − − − converges to 1−  while the subsequence of 
the even numbered terms:1, 1, 1, ... converges to 1. 
 
 
  



N.B.  Be sure you know the difference between a 
Series 

sequence and the sequence of its partial 
sums.   A series is convergent if its sequences of partial sums approaches a number. 

 The geometric series 

Key Theorem 
1

1

n

n
ar

∞
−

=
∑ converges if 1r < .  Otherwise, it diverges. 

 If it converges the sum is 
1

a
r−

. 

Hence, 

1.  The series 1
1

5
3

n

n
n

∞

+
=
∑   diverges with 5 1

3
r = > .  

2.  The series 
1

4 5 5 4
6

n n

n
n

∞

=

⋅ − ⋅∑ converges to 10 since it is the sum of two geometric series 

(justified by the limit laws of series) with 5 4  and   
6 6

r r= = respectively.   

Both less than 1. 

If 

Key Theorem ( Test for divergence ) 

lim 0nn
a

→∞
≠  or does not exist than 

1
n

n
a

∞

=
∑ is divergent.  

Hence, 

The series
1 1n

n
n

∞

= +∑ is divergent since lim
1n

n
n→∞

 
 + 

= 1 which is not 0. 

Be careful 1lim 0
n n→∞

  = 
 

.  The converse is not true.   while the harmonic series 
1

1
n n

∞

=

 
 
 

∑  diverges. 

 

The limit laws of sequences yield the limit laws of convergent series.  Such a law was used in #2 
above. 

 

  



Is a series Convergent or Divergent? 

You can use various tests to determine whether a series is convergent or divergent without 
necessarily finding the sum of the series.  You did something of the sort when you used the 
comparison test for integral. 

1.  The Integral Test. 
 Given a sequence { }na and its associated function ( ) nf n a= then if: 

   (a) f is continuous, positive and decreasing on [ )1,∞ and 

   (b) ( )
1

f x dx
∞

∫  is convergent (divergent) 

then the series 
1

n
n

a
∞

=
∑  is convergent (divergent). 

Examples: 

(a)  The function ( ) 1f x
x

= is continuous, positive and decreasing on [ )1,∞ and is 

divergent so by the integral test the series 
1

1
n n

∞

=
∑ is also divergent. 

(b) By p-integral test ( ) 2

1f x
x

= , p=2, is continuous, positive, decreasing and convergent 

so by the integral test the series 2
1

1
n n

∞

=
∑ is also convergent. 

This leads to a p-series test for series. 

Theorem:  The p-series 
1

1
p

n n

∞

=
∑ is convergent if p < 1 and divergent if 1p ≥ . 

Therefore, (b) above could be answered without resorting to the integral test

Example:  Use the integral test to show that 

. 

32

1

n

n
n e

∞
−

=
∑ converges. 

Solution:  The function ( ) 32 xf x x e−= is continuous, positive and decreasing (since derivative

 ( )3 32 3 0 for 1xxe x x− − < ≥ ) so the Integral Test applies.  

 Furthermore, 
3 32 2

1 1

1

3 1 1 1lim lim 0
3 3

1
3

t

tx x

t t

xx e dx x e dx
e ex

∞ − −

→∞ →∞

−  = = = − − = 
 

− 
∫ ∫   

 



 Since the improper integral is convergent then the associated series is also convergent by 
 The Integral Test.  



2.  The Comparison Test (for series). 
This test is similar to the integral comparison test applying to series whose terms are 
positive.  If the terms of our series are SMALLER than the terms of a convergent 
series than our series also converges and if the terms of our series are GREATER 
than the terms of a divergent series than our series also diverges. 
Theorem

1
n

n
a

∞

=
∑

: 

 Suppose and 
1

n
n

b
∞

=
∑ are series with positive terms. 

(a) If 
1

n
n

b
∞

=
∑  is convergent and n na b≤ for all n, then 

1
n

n
a

∞

=
∑ is also convergent. 

(b) If 
1

n
n

b
∞

=
∑  is divergent and n na b≥ for all n, then 

1
n

n
a

∞

=
∑ is also divergent. 

Example:   

 Use the comparison test to show that 2
1

1
1n n

∞

= +∑ is convergent. 

Solution: 

 For 1n ≥ , 2 21n n+ ≥ therefore, 2 2

1 1
1n n
≤

+
 

 But by p-series 2
1

1
n n

∞

=
∑ is convergent with p = 2. 

 Hence 2
1

1
1n n

∞

= +∑ is convergent by the series comparison test. 

[ Looks just like the integral comparison test.  Doesn’t it?] 
 
N.B.  As in the integral comparison test if your terms are greater than the terms of a 
convergent series the test does not apply.  Similarly, if your terms are less than the 
terms of a divergent series the test again does not apply. 
 

The series comparison test may be used to show that 
1

1
2 1n

n

∞

= +∑ is convergent by 

comparing this series to the convergent geometric series 
1

1
2n

n

∞

=
∑  since 2 1 2n n+ ≥ .  

However the comparison test will not work with 
1

1
2 1n

n

∞

= −∑  since 2 1 2n n− ≤ . 

 

  



We can get around this problem by using the following, very useful,  Limit 
Comparison Test

1
n

n
a

∞

=
∑

 

Suppose and 
1

n
n

b
∞

=
∑ are series with positive terms.  If ,  

lim an positive finite numbern

n
n

a
b→∞

= ,  then either both series converge or diverge. 

 

Now we can handle our problem series 
1

1
2 1n

n

∞

= −∑ .   

( )
1

2 1 2 1lim lim lim 11 12 1 12 2

n n

nn n n
n

n

→∞ →∞ →∞

−
= = =

− −
, a positive finite number and since the 

geometric series 
1

1
2n

n

∞

=
∑  converges it follows by The Limit Comparison Test that 

1

1
2 1n

n

∞

= −∑  also converges. 

 
Determine whether the series is convergent or divergent. 

1.  2
1 1n

n
n

∞

= +∑  2.  2
1

ln
1n

n
n

∞

= +∑  3.  
3 9 3

1

1
1n n n

∞

= − +
∑  4.  

1

1sin
n n

∞

=

 
 
 

∑
 

 

Use the Limit Comparison Test to determine if the series 
1

1
3 2n n

∞

= −∑ converges or 

diverges. 

[N.B.  The difficulty in using the comparison test is the requirement of choosing a 
series to compare to your series.  Other tests are often easier to apply. ] 
 

[  More difficult. ]  Determine if the series converges or diverges. 

1.   3 2 3 2 3

1 1 1 1 1 1 ...
2 2 2 3 4 2 5 6
+ + + + + +

⋅ ⋅
 

2.   1 1 1 1 1 1 ...
1 ln 2 3 ln 4 5 ln 6
+ + + + + +  

 
 



 
3 . Alternating Series 
 How to deals with series whose terms are not necessarily positive. 
 Series whose terms alternate between positive and negative are called alternating  series

( ) 1

1

1 1 1 11 1 ...
2 3 4

n

n n

∞
+

=

− = − + − +∑

.  
 For example: 

   

 or        ( )
1

1 1 1 11 1 ...
2 3 4

n

n n

∞

=

− = − + − + −∑  

 Generally alternating series have the form: 

 ( ) 1
1 2 3 4

1
1 ...n

n
n

a a a a a
∞

+

=

− = − + − +∑   or  ( ) 1 2 3 4
1

1 ...n
n

n
a a a a a

∞

=

− = − + − + −∑  

 

 This test has three conditions for series to be convergent 
 1.  The series must alternate. 
 2.  The terms must decrease ( in absolute value ) for large n. 
 3.  The nth term must go to 0. 

The Alternate Series Test 

Use the alternating series test to show that each series converges. 

1.  ( ) 1

1

11 n

n n

∞
+

=

−∑   2.  ( ) ( )
1

1

31
1

n

n

n
n n

∞
+

=

+
−

+∑  

Solution: 

 1.  The series is obviously alternating and 1
1 1

1n na a
n n += > =

+
, hence decreasing. 

 Furthermore, 1lim lim 0nn n
a

n→∞ →∞
= = .  By alternate series test ( ) 1

1

11 n

n n

∞
+

=

−∑ converges. 

 2.  The series is obviously alternating and 

( )( )

( )( )

( )
( )( )

2
1

2

4
1 2 4 4 13 3 2 5 6

1

n

n

n
n n n na n n

na n n n n
n n

+

+
+ + + +

= = = <
+ + + + +
+

 since ( )4 5 6n n< + . Hence 

1n na a +> . [ Notice the strategy  to show that 1n na a +> ] 



Furthermore, 
( )

2
1 3

3lim lim lim 011 1
nn n n

n n na
n n

n
→∞ →∞ →∞

++
= = =

+ +
.  By alternate series test 

( ) ( )
1

1

31
1

n

n

n
n n

∞
+

=

+
−

+∑ converges. 

Since the third requirement of the Alternating Series test is lim 0nn
a

→∞
= , is the second 

condition of 1n na a +>  really required.  The answer is yes.  We can construct a series 
in which the first and third conditions are satisfied but not the second.  In the case 

where the series is 1 1 1 1 1 1 1 11 2 1 1 ...
2 2 4 2 4 8 4 8

− + − + − + − + − + − +  

The terms do go to 0, but they are not strictly decreasing.  The partial sums go to 0 
1 1 1 1 1 11, 1,0, , ,0, , ,0, , ,0,...
2 2 4 4 8 8

− − − − so the series converges. 

However the series 1 1 1 1 1 1 1 1 11 ...
2 2 4 3 8 4 16 5 32

− + − + − + − + − + diverges since the 

positive terms form the harmonic series, and thus tend to infinity while the sum of the 
negative terms is 1− . 

  



Some series are neither alternating nor a series of positive terms.  The tests that 
follow can be applied to such series. 

Absolute Convergence and the Ratio and Root Tests 

Definition: 

 A series 1 2 3
1

...n
n

a a a a
∞

=

= + + +∑ is said to converge absolutely

1 2 3
1

...n
n

a a a a
∞

=

= + + +∑

 if the series of 

absolute values converges.  And 

 A series 1 2 3
1

...n
n

a a a a
∞

=

= + + +∑ is said to diverge absolutely

1 2 3
1

...n
n

a a a a
∞

=

= + + +∑

 if the series of 

absolute values diverges. 

 

Example: 
Determine whether the following series converges absolutely or diverges absolutely, 

2 3 4 5

1 1 1 1 1 1 1 1 1( ) 1 ... ( ) 1 ...
2 2 2 2 2 2 3 4 5

a b− − + + − − − + − + −  

Solution: 

(a)  The series of absolute values 2 3 4 5

1 1 1 1 11 ...
2 2 2 2 2

+ + + + + + is the convergent 

geometric series with 1
2

r = .  Therefore, the given series converges absolutely. 

(b) The series of absolute values 1 1 1 11 ...
2 3 4 5

+ + + + +  is the divergent harmonic 

series.  Therefore, the given series diverges absolutely. 
 
N.B. Theorem

1
n

n
a

∞

=
∑

 

If a series is absolutely convergent, then it is convergent. 

Example: 

Determine whether the series 2
1

cos
n

n
n

∞

=
∑  is convergent. 

Solution: 

 We apply the Comparison Test to the series of absolute values, 2
1

cos
n

n
n

∞

=
∑ . 



 2
1

cos
n

n
n

∞

=
∑ = 2 2

1 1

cos 1   since cos 1  for all .
n n

n
n n

n n

∞ ∞

= =

≤ ≤∑ ∑  

  

 But 2
1

1  
n n

∞

=
∑ is convergent (p-series with p=2>1) so by Comparison Test  

 2
1

cos

n

n
n

∞

=
∑  converges.  Hence, 2

1

cos
n

n
n

∞

=
∑ is absolutely convergent and therefore 

 2
1

cos
n

n
n

∞

=
∑ converges. 

Note:  A convergent series that is not absolutely convergent is said to be conditionally 
convergent

Hence, since the harmonic series 

. 

1

1
n n

∞

=
∑ is divergent while the alternating harmonic 

series ( ) 1

1

11 n

n n

∞
−

=

 −  
 

∑ is convergent we say that ( ) 1

1

11 n

n n

∞
−

=

 −  
 

∑  is conditionally 

convergent. 
 
Although we cannot generally infer convergence or divergence of a series from 
absolute divergence

 

, the following test is very useful in determining whether a given 
absolute divergent series is divergent. 

 For a given series 

The Ratio Test 

1
n

n
a

∞

=
∑  if 1lim n

n
n

a L
a
+

→∞
= then if: 

 (a)  L < 1 the series 
1

n
n

a
∞

=
∑ is absolutely convergent and thus convergent. 

 (b)  L > 1 or 1lim n

n
n

a
a
+

→∞
= ∞ the series diverges. 

 (c)  L = 1 the Ratio Test fails.  No conclusion can be drawn. 
 
Example: 
 Use The Ratio Test to determine whether the series converges or diverges. 

 ( ) ( ) ( )
1 1

2 12( ) 1 ( ) 1
! 3

n
n n

n
n n

n
a b

n

∞ ∞

= =

−
− −∑ ∑  



Solution: 

( ) 2 2( ) 1
! !

n n
n

na a
n n

= − =   Therefore, 

( )
1

1 2 ! 2lim lim lim 0 1
1 ! 2 1

n
n

nn n n
n

a nL
a n n

+
+

→∞ →∞ →∞

 
= = ⋅ = = < + + 

. 

Hence the series converges absolutely and therefore the series converges. 

( ) ( ) ( )2 1 ! 2 1 !
( ) 1

3 3
n

n n n

n n
b a

− −
= − =  

( )( )
( )

( )
( ) ( )( )1

1

2 1 1 2 1 !3 1 1lim lim lim lim 2 2 1
3 2 1 ! 3 2 1 ! 3

n
n

nn n n n
n

na n
L n n

a n n
+

+→∞ →∞ →∞ →∞

 + − +
= = ⋅ = = + = ∞ 

− −  
 

which implies that the series diverges. 
 
The following test is convenient to apply when the nth power occurs. 
The Root Test 

1
n

n
a

∞

=
∑For a given series  if lim n

nn
a L

→∞
= then if: 

 (a)  L < 1 the series 
1

n
n

a
∞

=
∑ is absolutely convergent and thus convergent. 

 (b)  L > 1 or lim n
nn

a
→∞

= ∞ the series diverges. 

 (c)  L = 1 the Root Test fails.  No conclusion can be drawn. 

Use The Root Test to determine whether the series converges or diverges. 

 (a)  

Example: 

1 !

n

n

n
n

∞

=
∑  (b)

1

2 5
3 1

n

n

n
n

∞

=

+ 
 + 

∑  

Solution:  

(a)  For the series 
1 !

n

n

n
n

∞

=
∑ ,  

!

n

n
na
n

=  

 Therefore,  1 since !
! !

n
nn n

n n

n na n n
n n

= = > >   

 Hence, the series diverges. 



(b)For the series 
1

2 5
3 1

n

n

n
n

∞

=

+ 
 + 

∑ ,  2 5
3 1

n

n
na
n
+ =  + 

 so 

522 5 2 5 2lim lim lim lim 113 1 3 1 33

n

n n
nn n n n

n n na
n n

n
→∞ →∞ →∞ →∞

++ + = = = = < + +  +
 

Therefore the given series converges by The Root Test. 
 

Summary of Convergence Tests 

Test Name  Statement( will us na∑e to denote 
1

n
n

a
∞

=
∑ )          

Divergence Test 

Suggestions 

 
If lim 0,nn

a
→∞

≠ then na∑ diverges If lim 0,nn
a

→∞
= then na∑ may or 

may not converge. 
Integral Test Let na∑ be a series of positive terms.  If f is a 

function that is decreasing and continuous on [ ),c ∞

and such that ( )  for all ,ia f i n c= ≥ then 

( )
1

 and n c
n

a f x dx
∞ ∞

=
∑ ∫ both converge or both diverge 

Applies only to series of positive

( )f x

 
terms. 
Try this test when is easy 
to integrate.  

Comparison Test 
Suppose 

1
n

n
a

∞

=
∑ and 

1
n

n
b

∞

=
∑ are series with positive 

terms. 

(a) If 
1

n
n

b
∞

=
∑  is convergent and n na b≤ for all n, then 

1
n

n
a

∞

=
∑ is also convergent. 

(b) If 
1

n
n

b
∞

=
∑  is divergent and n na b≥ for all n, then 

1
n

n
a

∞

=
∑ is also divergent. 

 

Applies only to series of 
nonnegative terms. 
Try this as a last resort; other 
tests are often easier to apply. 

Limit Comparison 
Test Suppose 

1
n

n
a

∞

=
∑ and 

1
n

n
b

∞

=
∑ are series with positive 

terms.  If ,  lim an positive finite numbern

n
n

a
b→∞

= ,  

then either both series converge or diverge. 
 

This is easier to apply than The 
Comparison Test, but still 
requires some skill in choosing 

the series 
1

n
n

b
∞

=
∑ for comparison.  



Ratio Test 
For a given series 

1
n

n
a

∞

=
∑  if 1lim n

n
n

a L
a
+

→∞
= then if: 

 (a)  L < 1 the series 
1

n
n

a
∞

=
∑ is absolutely 

convergent and thus convergent. 

 (b)  L > 1 or 1lim n

n
n

a
a
+

→∞
= ∞ the series 

diverges. 
 (c)  L = 1 the Ratio Test fails.  No 
conclusion can be drawn. 

Try this test when na involves 
factorials or nth powers. 
The series need not have 
positive terms and need not be 
an alternating series to use this 
test. 

Root Test 
For a given series 

1
n

n
a

∞

=
∑  if lim n

nn
a L

→∞
= then if: 

 (a)  L < 1 the series 
1

n
n

a
∞

=
∑ is absolutely 

convergent and thus convergent. 
 (b)  L > 1 or lim n

nn
a

→∞
= ∞ the series 

diverges. 
 (c)  L = 1 the Root Test fails.  No conclusion 
can be drawn. 

Try this test when na involves 
nth powers. 
 

Alternate Series 
Test 

This test has three conditions for series to be 
convergent 
 1.  The series must alternate. 
 2.  The terms must decrease ( in absolute 
value ) for large n. 
 3.  The lim 0nn

a
→∞

= . 

 

This test applies only to 
alternating series. 

 

 

This is a good time to read the strategies of testing series and do the accompanying exercise! 


