Volume
We will look at three methods of calculating volumes.
1. Byslicing a cross-section.

2. By disks
3. by shells.
By slicing a cross-section
Area = lw S A(X) = J.ab f (x)dx
Volume = area x height -V (x)z_[: A(x)dx

Example: Find the volume of a right circular cone.
“sketch”

A(a)=ra’

2
In terms ofx:A(x):ﬂ(%j since 3:% S0 a:%

X
2
(¥

2
SV (x)= joh A(x)dx = J'Oh% X% dx

h
a2 a1 )
=77 A =—2—=—7zrh
3| h 3 3

If you look at the above example you should notice that the problem is solve once
we have found the area function A(x).
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Therefore, it is useful to know the following area formulae.

Cross-section figure diagram formula
square 52
. 1,
semi-circle —xr
2
. . 1
equilateral triangle 56{%}

Others we can look at are a triangle and an isosceles triangle.

If the cross-section has its base perpendicular to the x-axis we have a formula
involving the length y or 2y. Therefore, know the following:

figure lengthisy length is 2y
square y? (2y)" =4y?
2

) z

semi-circle ANV Y
2 2
2

equilateral triangle %y(@ yj:\/gTy %(Zy)(\@y):\@yz

I like to set up a coordinate system when a volume is requested.

86



“sketch” “area sketch”

Calculating the area A(y) =y’ Buty =%x
r Y ar?

- Areain terms of x: A(x)= ﬂ(ﬁ x] = sz

Using the above to find the volume is easy!

2
V(x)= Ioh A(x)dx = Ioh%xz dx

h
B zr? h? 3 zr?h

T h? 3 3

ot x®

 h? 3

0

Example: A solid has a circular base of radius = 1. Planar cross section
perpendicular to the base are:
(@) squares.
(b) equilateral; triangles
Find the volume of the solid.

Solution:
(@) “sketch” “area sketch”

A(y)=(2y)(2y)=4y? But xX*+y*=1
In terms of x: A(x):4(1—x2)

V= J'_llA(x)dx :J-_114(1— xz)dx

1
or V :2j:4(1—x2)dx:8{x—§} :%
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(b) “sketch” “area sketch”
A(Y) “Lph :l(Zy)(ﬁy) =/3y? But x*+y?=1
2 2
Interms of x: A(X)= fﬁ/(l— xz)f
V= IflA(x)dx :jllﬁ(l\—/;z)dx

. Vv T 2\ 4
0 rvzjoﬁ(l—xz)olxzﬁlr —?} ZﬁﬁEJEﬁ
J ° J

Example (pg. 454 #56)
The base S is the parabolic region {(x y)|x2 <y Sl} . Cross- sections

perpendicular to the y-axis are equilateral triangles. Find the volume of S.
Solution:
“sketch” “area sketch”

A(X)=%(2X)\/§X But x> =y
Areaintermsofy: A(y)= J3y

2 1
.. Volume = jolA(y)dy = I:\/§y dy = \/§Ty = g

0
Disk/Washer Method
What is the volume of a cylinder (“hockey puck”)?

“sketch” V = area xheight = zr°h

V=x(2)3=12z

In general,
“sketch” V = zr?x
“sketch” Rotate f(x), from a to b, about the x-axis

V= J. : 72'[ f (X)]2 dx «This is the sum of all the cylinders.
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Example: (pg. 452 #2)
Find the volume of the solid obtained by rotating the region bounded by

the curves y =e*, y=0, x=0, x =1about the x-axis
Solution:
" " _ L 2 _ 1 X 2 n 211
Sketch Vv _jony dx_jon(e ) dx «"zr’h

1

1
= IO re¥dx=rx

Example: (pg. 452 #2)
Find the volume of the solid obtained by rotating the region bounded by

the curves y =+/x—1, y=0, x =2, x =5about the x-axis
Solution:

"Sketch" V= _[:ﬂy2 dx = Jjﬂ(\/ﬁ)z dx <« "zr’h"

:ﬂjj(x_gdx:ﬁg—x}

Zﬂ(§—5—£+2J
2 2

Example: Find the formula for the volume of a cone
Solution: “sketch” “coordinatized sketch”

5

2

y—LX
h
("eyrax= "z Ex| ax=Z["x
V_j ry dx = ﬂ(hXj dx o dx
2 3 2 3 2
=% L =% h— —O=7Zr h <« Same as with cross-sections
h*| 3], h 3 3



Example: (pg. 452 #6)
Find the volume of the solid obtained by rotating the region bounded by

the curves x =y —y®and x = 0about the y-axis

Solution:
1 1 2
"Sketch" v :'[Oﬂx2 dyz_[orz(y—yz) dy «"zreh"
Lo o Yoy oy
= 2y +yt)dy =z -2+
1 1 1) T
= —_———t— | =—
(3 2 5) 30
Washers:

Find the volume of the solid obtained by rotating the region enclosed by
the curves y=x?+2 and y = x+8 about the x-axis.

Solution:
n n 3 2 3 2 n 211
Sketch Vz.[ Ty dx—j zY“dx <«"zrch
Intersection: —I (x+8)" dx— I x +2) dx
2 _
X°+2=Xx+8 OR
X*—x-6=0

(x-3)(x+2)=0 V= Ji;z[ (x+8)° x +2) }dx
X=3,-2 =j_327r[x2+16x+64—x4—4x2—4]dx

_ '[iyz[—x“ —3x2+16x+ 60] dx etc.

Example: (pg. 452 #12)
Find the volume of the solid obtained by rotating the region bounded by

the curves y = x*and y =4 about the line y = 4.
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Solution:

"sketch” V=" z(4-y) dx «"r’h"
Intersection OR
X =4 V22_[0272'(4—)/)2dXZZJ.OZﬂ'(4—X2)2dX

X =12 :27r_[()2(16—8x2 +x4)dx

3 572
=2r 16x—8i+x—
3 2 |,

Example: (pg. 452 #12)
Find the volume of the solid obtained by rotating the region bounded by

the curves y=xand y = Jx about the line x = 2.

Solution:
"Sketch”  V=[ zR'dy-[ ardy <« "zrth”
Intersection =j:7z(2—x)2 dy—.[:7z(2—x)2 dy
i =Jrlemy ey e
X2 =X :ﬂ_[:(4—4y2+y4)—(4—4y+ yz)dy
x*—x=0 =7z_[01y4—5y2+4ydy

5 3 1

x(x-1)=0 :7Z'|:y?—5%+2y2}

x=0, x=1 :7{1—§+2}
5 3

8
:O’ :1 = —
y y 57

0
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Shell Method:
The following example demonstrates the need for the shell method.

Example: Find the volume as the region enclosed by the x-axis and the curve
y = 2x* —x° is rotated about the y-axis.
Solution:
“sketch”
To use the disk method we would need to change the function into the
form x= f (y). This s difficult.

We find the sum of all rectangles rolled into shells
“sketch”.
Volume = area x thickness.
area = surface area of the side = circumference x height

= (27x)y or (27zx) f (x)
thickness = dx
. volume of each shell = 2z xf (x)dx

b
Total accummulation of all shells = Volume = J' 272xF (x) dx

[Note: Using disk think of zr?h, while using shells think of 2zrh .]

Example: Let’s do the introductory question to this section.
Solution:

"sketch" y=2x"-x°
Vv =J.2272'X 2x2 —x3) «"2zrh"
V= 27rj 2x —x*)dx

)
V=27z|: X —%xf’} (8——):?7z
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Example: Find the volume of the solid obtained by rotating the region bounded
by the curves y =x?and y = x about the y-axis using:
(@) shells (b) disks

Solution:
(a)  Shells «"2zrh" "sketch"

(a)  Shells < "zr*h" "sketch"

V:J'Ol;r(xz—xz)dy:_[:;z(y—yz)dy
W{y_z_y_g}l:ﬁ[z_z}z
2 3| "l273) 76

Example: Use the shell method to find the volume of a hemi-sphere with radius 1.
Solution:
2

"27zrh" X+yi=1 x=41-y

“sketch” V = J.ol27ry«/1— y? dy
1
\Y :—72'(1— yz)% (%}0 :_”(O_éj Zéﬂ'

Example: Set up an integral to find the volume of the solid obtained by rotating
the region bounded by the curves y =4x—x*and y = x about the line with
equation x = 7.
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Solution:

"sketch™ Shells is much easier.."2zrh"
Intersection: Vv :J'0327z(7—x)[(4x—x2)—x} dx
4X— X" =X

0=x*-3x

0=x(x-3)

x=0,3
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