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1. By slicing a cross-section. 

Volume 
We will look at three methods of calculating volumes. 

2. By disks 
3. by shells. 
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By slicing a cross-section 

  

 
Example:  Find the volume of a right circular cone. 
 
  “sketch” 
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If you look at the above example you should notice that the problem is solve once 
we have found the area function ( )A x . 
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Therefore, it is useful to know the following area

2

2

Cross-section figure diagram formula

    square
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2

1 3   equilateral triangle
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 formulae. 

 

 
Others we can look at are a triangle and an isosceles triangle. 
 
If the cross-section has its base perpendicular to the x-axis we have a formula 
involving the length y or 2y.  Therefore, know the following: 
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I like to set up a coordinate system when a volume is requested. 
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 “sketch”  “area sketch”
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Calculating the area But 

Area in terms of :

Using the above to find the volume is easy!
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Example:  A solid has a circular base of radius = 1.  Planar cross section   
  perpendicular to the base are: 
  (a)  squares. 
  (b)  equilateral; triangles 
     Find the volume of the solid. 
 
Solution: 
 (a)  “sketch”   “area sketch” 
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 (b)  “sketch”   “area sketch” 
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Example (pg. 454 #56) 
 The base S is the parabolic region ( ){ }2, 1x y x y≤ ≤ .  Cross- sections  

 perpendicular to the y-axis are equilateral triangles.  Find the volume of S. 
Solution: 
 “sketch”  “area sketch” 
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2r hπ

Disk/Washer Method 
What is the volume of a cylinder (“hockey puck”)? 
“sketch”  V = area ×height =  
 
 
   ( )22 3 12V π π= =  
In general, 
 “sketch” 2V r xπ=  
 
 “sketch” Rotate f(x), from a to b, about the x-axis 

   ( ) 2b

a
V f x dxπ=   ∫ ←This is the sum of all the cylinders. 
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Example: (pg. 452 #2) 
 Find the volume of the solid obtained by rotating the region bounded by 
 the curves , 0, 0, 1xy e y x x= = = = about the x-axis 
Solution: 
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Example: (pg. 452 #2) 
 Find the volume of the solid obtained by rotating the region bounded by 
 the curves 1, 0, 2, 5y x y x x= − = = = about the x-axis 
Solution: 
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Example:  Find the formula for the volume of a cone 
Solution: “sketch”   “coordinatized sketch” 
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Example: (pg. 452 #6) 
 Find the volume of the solid obtained by rotating the region bounded by 
 the curves 2 and 0x y y x= − = about the y-axis 
Solution: 
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Washers

2 2  and  8y x y x= + = +

: 
 Find the volume of the solid obtained by rotating the region enclosed by 
 the curves  about the x-axis. 
Solution: 
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Example: (pg. 452 #12) 
 Find the volume of the solid obtained by rotating the region bounded by 
 the curves 2 and 4y x y= = about the line y = 4. 
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Solution: 
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Example: (pg. 452 #12) 
 Find the volume of the solid obtained by rotating the region bounded by 
 the curves and y x y x= = about the line x = 2. 
Solution: 
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Shell Method

2 32y x x= −

: 
The following example demonstrates the need for the shell method. 
 
Example:  Find the volume as the region enclosed by the x-axis and the curve  
   is rotated about the y-axis. 
Solution: 
   “sketch” 
 To use the disk method we would need to change the function into the 
 form ( )x f y= .  This is difficult. 
 
We find the sum of all rectangles rolled into shells 
 “sketch”. 
 Volume = area × thickness. 
 area = surface area of the side = circumference × height  
        = ( ) ( ) ( )2  or 2x y x f xπ π  
 thickness = dx  

 
( )

( )

volume of each shell 2

Total accummulation of all shells = Volume = 2
b
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xf x dx
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[Note: Using disk think of 2 ,  while using shells think of 2r h rhπ π .] 
 
Example:  Let’s do the introductory question to this section. 
Solution: 
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Example:  Find the volume of the solid obtained by rotating the region bounded  
  by the curves 2 and y x y x= = about the y-axis using: 
  (a)  shells (b)  disks 
 
Solution: 
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Example: Use the shell method to find the volume of a hemi-sphere with radius 1. 
Solution: 

 “sketch”  
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Example: Set up an integral to find the volume of the solid obtained by rotating  
 the region bounded by the curves 24 and y x x y x= − = about the line with 
 equation x = 7. 
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 Solution: 
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