MATH 3GR3 Midterm Test \#2 Sample Questions

1. (a) State Lagrange's Theorem.
(b) Let G be a group and suppose that $a \in G$ has order 2 . Show that $\{e, a\}$ is a subgroup of G.
(c) Show that if G is a finite group that contains an element a of order 2 , then $|G|$ is an even number.
2. Determine which of the following pairs of groups are isomorphic. Justify your answers to receive credit.
(a) \mathbb{Z} and \mathbb{R}.
(b) \mathbb{Z} and $3 \mathbb{Z}$.
(c) \mathbb{Z}_{6} and S_{3}.
3. Consider the group $G L_{3}(\mathbb{R})$ of all 3×3 invertible matrices over \mathbb{R}, with group operation the usual matrix multiplication, and let
$H=\left\{\left(\begin{array}{ccc}r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r\end{array}\right): r \neq 0\right\}$ and $K=\left\{A \in G L_{3}(\mathbb{R}): \operatorname{det}(A)=1\right\}$.
(a) Show that H and K are subgroups of $G L_{3}(\mathbb{R})$.
(b) Show that $G L_{3}(\mathbb{R})$ is isomorphic to $H \times K$. You may present an explicit isomorphism (with proof) between these two groups to establish the isomorphism, or prove that $G L_{3}(\mathbb{R})$ is the internal direct product of H and K.
4. Let G be a group and let H and N be subgroups of G. Show that if N is a normal subgroup of G then $H N=\{h n: h \in H$ and $n \in N\}$ is a subgroup of G.
5. Let G be a group and H a subgroup of G of order n.
(a) If $g \in G$, show that the set $g \mathrm{Hg}^{-1}$ is also a subgroup of G and that this subgroup has order n.
(b) Suppose that H is the only subgroup of G that has order n. Show that H is a normal subgroup of G.
