MATH 3GR3 Midterm Test \#2 Sample Questions

1. (a) State Lagrange's Theorem.

Solution: Consult the textbook.
(b) Let G be a group and suppose that $a \in G$ has order 2. Show that $\{e, a\}$ is a subgroup of G.

Solution: We need to show that $\{e, a\}$ is closed under the multiplication of the group G, that is closed under taking inverses and that it contains the identity element of G. The last is clear, since e is the identity element of G. Since a has order 2 then $a a=e$ and so $a^{-1}=a$. Since $e^{-1}=e$ then $\{e, a\}$ is closed under taking inverses. Since $a a=e e=e$ and $e a=a e=a$, then this set is also closed under multiplication. Thus $\{e, a\}$ is a subgroup of G.
(c) Show that if G is a finite group that contains an element a of order 2 , then $|G|$ is an even number.

Solution: From part b) it follows that G has a subgroup H of order 2. Then, by Lagrange's Theorem, 2 divides into $|G|$ and so $|G|$ is an even number.
2. Determine which of the following pairs of groups are isomorphic. Justify your answers to receive credit.
(a) \mathbb{Z} and \mathbb{R}.

Solution: \mathbb{Z} is a cyclic group, while \mathbb{R} is not, and so these two groups are not isomorphic.
(b) \mathbb{Z} and $3 \mathbb{Z}$.

Solution: Both of these groups are infinite and cyclic and so they are isomorphic. The map that sends an integer n to the integer $3 n$ is an isomorphism from \mathbb{Z} to $3 \mathbb{Z}$.
(c) \mathbb{Z}_{6} and S_{3}.

Solution: \mathbb{Z}_{6} is an abelian group and S_{3} is non-abelian and so these two groups are not isomorphic.
3. Consider the group $G L_{3}(\mathbb{R})$ of all 3×3 invertible matrices over \mathbb{R}, with group operation the usual matrix multiplication, and let
$H=\left\{\left(\begin{array}{ccc}r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r\end{array}\right): r \neq 0\right\}$ and $K=\left\{A \in G L_{3}(\mathbb{R}): \operatorname{det}(A)=1\right\}$.
(a) Show that H and K are subgroups of $G L_{3}(\mathbb{R})$.

Solution: H is closed under addition and inverse, since if $r, s \in \mathbb{R}^{*}$ then

$$
\left(\begin{array}{lll}
r & 0 & 0 \\
0 & r & 0 \\
0 & 0 & r
\end{array}\right)\left(\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & s
\end{array}\right)=\left(\begin{array}{ccc}
r s & 0 & 0 \\
0 & r s & 0 \\
0 & 0 & r s
\end{array}\right) \in H
$$

and

$$
\left(\begin{array}{ccc}
-r & 0 & 0 \\
0 & -r & 0 \\
0 & 0 & -r
\end{array}\right) \in H . \quad \begin{aligned}
& \text { should be } 1 / r, \text { not }-r \\
& \text { down the diagonal. }
\end{aligned}
$$

H contains the identity matrix and so is a subgroup.
Since the product of two matrices that have determinant 1 also has determinant 1 and since the inverse of such a matrix also has determinant 1 , then K is closed under product and inverse. K also contains the identity matrix and so is a subgroup.
(b) Show that $G L_{3}(\mathbb{R})$ is isomorphic to $H \times K$. You may present an explicit isomorphism (with proof) between these two groups to establish the isomorphism, or prove that $G L_{3}(\mathbb{R})$ is the internal direct product of H and K.

Solution: Since the only matrix that lies in both H and K is the identity matrix, then $H \cap K$ contains only the identity matrix. Since every matrix in H commutes with all matrices, then $A B=$ $B A$ for all $A \in H$ and $B \in K$. To show that $G L_{3}(\mathbb{R})$ is the internal direct product of H and K we need only show that every matrix in the group is a product of a matrix from H and one from K. If $B \in G L_{3}(\mathbb{R})$, let $r=\operatorname{det}(B)$. Then the matrix $C=(1 / r) B$ has determinant 1 and so is in K. Then

$$
B=\left(\begin{array}{ccc}
1 / r & 0 & 0 \\
0 & 1 / r & 0 \\
0 & 0 & 1 / r
\end{array}\right) C \quad \begin{aligned}
& \text { should be } r \text { instead } \\
& \text { of } 1 / r \text { down the } \\
& \text { diagonal. }
\end{aligned}
$$

and so B is equal to a product of a matrix from H and a matrix from K. Thus the group is isomorphic to the cartesian product of H and K.
4. Let G be a group and let H and N be subgroups of G. Show that if N is a normal subgroup of G then $H N=\{h n: h \in H$ and $n \in N\}$ is a subgroup of G.

Solution: $H N$ contains the identity element e since it belongs to both H and K. If $a, b \in H$ and $c, d \in N$, then $a c, b d \in H N$ and $(a c)(b d)=$ $a(c b) d=a\left(b c^{\prime}\right) d$ for some $c^{\prime} \in N$, since $N b=b N$. But $a\left(b c^{\prime}\right) d=$ $(a b)\left(c^{\prime} d\right) \in H N$. Thus $H N$ is closed under multiplication. Similarly, $(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{\prime}$ for some $b^{\prime} \in N$ and so $(a b)^{-1} \in H N$. Thus $H N$ is a subgroup of G.
5. Let G be a group and H a subgroup of G of order n.
(a) If $g \in G$, show that the set $g H^{-1}$ is also a subgroup of G and that this subgroup has order n.

Solution: If $h, k \in H$ then $\left(g h g^{-1}\right)\left(g k g^{-1}\right)=g(h k) g^{-1} \in g H g^{-1}$ and so $g H g^{-1}$ is closed under products. $\left(g h g^{-1}\right)^{-1}=g h^{-1} g^{-1} \in$ $g \mathrm{Hg}^{-1}$ and so gHg^{-1} is closed under inverse. This set also contains e since $e=g e g^{-1}$ and so this set is a subgroup. The map that sends $h \in H$ to $g h g^{-1}$ is a bijection between H and $g H g^{-1}$ and so these two sets have the same size.
(b) Suppose that H is the only subgroup of G that has order n. Show that H is a normal subgroup of G.

Solution: From par a) it follows that for all $g \in G, g H^{-1}=H$, since both sets are subgroups of order n. But this condition is equivalent to H being a normal subgroup.

