
MATH 3GR3 Assignment #2 Solutions
Due: Friday, October 6, by 11:59pm.

Upload your solutions to the Avenue to Learn course website.

1. Produce the Cayley table for the group U(16), the group of units of
Z16. Is this group cyclic?

Solution: U(16) = {1, 3, 5, 7, 9, 11, 13, 15} and its Cayley table is

· 1 3 5 7 9 11 13 15

1 1 3 5 7 9 11 13 15
3 3 9 15 5 11 1 7 13
5 5 15 9 3 13 7 1 11
7 7 5 3 1 15 13 11 9
9 9 11 13 15 1 3 5 7
11 11 1 7 13 3 9 15 5
13 13 7 1 11 5 15 9 3
15 15 13 11 9 7 5 3 1

By inspection we see that U(16) does not contain an element of order
8, the order of this group, and so it is not cyclic. The elements 3, 5, 11,
and 13 all have order 4 and the elements 7, 9, and 15 all have order 2.

2. Let G be a group and S a nonempty subset of G. Define the following
relation on G:

a ∼ b if and only if s1as2 = b for some s1, s2 ∈ S.

(a) Show that if S is a subgroup of G then ∼ is an equivalence relation
on G.

(b) Compute the equivalence classes of ∼ for the group of symmetries
of the equilateral triangle, using the subgroup S = {id, µ1}.

(c) Show, by example, that if S is not a subgroup, then ∼ need not
be an equivalence relation.

Solution: For (a) we need to show that this relation is reflexive, sym-
metric, and transitive when S is a subgroup of G:
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� for g ∈ G, g ∼ g since ege = g and e ∈ S,

� if g ∼ h then there are s1, s2 ∈ S with h = s1gs2. But then s−1
1 ,

s−1
2 ∈ S and g = s−1

1 hs−1
2 , showing that h ∼ g.

� if g ∼ h and h ∼ k then there are si ∈ S, 1 ≤ i ≤ 4 with h = s1gs2
and k = s3hs4. But then s3s1, s2s4 ∈ S and k = (s3s1)g(s2s4),
showing that g ∼ k as required.

For part (b), let’s compute [id]∼: an element of the group is∼-related to
id if it can be written in the form s1ids2 for some s1, s2 ∈ S = {id, µ1}.
So, there are four different possibilities for s1 and s2. By trying them
all we see that

[id]∼ = {id, µ1}.

Since id ∼ µ1, then [µ1]∼ is also equal to {id, µ1}. Using a similar
approach, it can be shown that

[µ2]∼ = {µ2, µ3, ρ1, ρ2}.

Since these two equivalence classes partition the entire group (it has
exactly 6 elements), then they are the only equivalence classes of this
equivalence relation.

For part (c), we can use the same group, but choose S to be a subset
that is not a subgroup. For example, if we set S = {µ1}, then the
resulting relation ∼ is not reflexive (check that µ2 ̸∼ µ2) and so it is
not an equivalence relation.

3. Let G = Z× Z. Define a binary operation ⋄ on G as follows:

(a, b) ⋄ (c, d) = (a+ c, (−1)cb+ d).

(a) Show that G with the operation ⋄ is a group.

(b) Is this group cyclic? Justify your answer.

Solution:

First note that the product of two pairs of integers is another pair of
integers and so ⋄ is a well-defined operation on G. The element (0, 0)
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can be seen to be the identity element with respect to ⋄. The following
shows that ⋄ is associative:

(a, b) ⋄ ((c, d) ⋄ (e, f)) = (a, b) ⋄ (c+ e, (−1)ed+ f)

= (a+ (c+ e), (−1)(c+e)b+ ((−1)ed+ f))

= ((a+ c) + e, (−1)e((−1)cb+ d) + f)

= (a+ c, (−1)cb+ d) ⋄ (e, f)
= ((a, b) ⋄ (c, d)) ⋄ (e, f)

Finally, it can be checked that the inverse of the element (a, b) is
(−a,−(−1)−ab).

We know that every cyclic group is abelian, and so to show that G
is not cyclic, it suffices to note that (0, 1) ⋄ (1, 1) = (1, 0) ̸= (1, 2) =
(1, 1) ⋄ (0, 1). Alternatively, one can show directly that no pair (a, b) is
a cyclic generator of G.

4. Let H and K be subgroups of the group G. Show that H ∩ K is a
subgroup of G. Provide an example that shows that H ∪ K is not
necessarily a subgroup of G.

Solution: LetH andK be subgroups of the group G and let S = H∩K.
Since e belongs to both H and K (any subgroup must contain the
identity element) then e ∈ S. Suppose that a, b ∈ S. Then a, b ∈ H
and a, b ∈ K. Since H and K are closed under the group operation
of G and are also closed under taking inverses, then ab, a−1 ∈ H and
ab, a−1 ∈ K. Thus ab ∈ S and a−1 ∈ S. This establishes that S is
closed under the group operation of G, is closed under taking inverses
and contains the identity element of G. Thus S is a subgroup of G.

The union of two subgroups of a group is not necessarily a subgroup.
For example in the group of symmetries of the rectangle, both H =
{id, s1} and K = {id, s2} are subgroups (s1 is reflection along the
vertical axis and s2 is rotation by π radians), but H ∪K = {id, s1, s2}
is not a subgroup since it is not closed under the group operation. This
is because s1 ◦ s2 = s3, which is not a member of H ∪K.

5. Let a and b be integers and define K = {na + mb |n,m ∈ Z}. Show
that K is a subgroup of Z. Since every subgroup of Z is cyclic, then K
also has this property. Find a generator for K, and justify your answer.
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Solution: To see that K is a subgroup of Z, we show that 0 ∈ K, K is
closed under addition, and for any z ∈ K we have −z ∈ K. 0 ∈ K since
K = {na+mb | n,m ∈ Z} and taking n = m = 0 we get 0a+0b = 0 ∈
K. Now let g, h ∈ K. Then we have g = n1a +m1b, h = n2a +m2b.
Then g + h = n1a+m1b+ n2a+m2b = (n1 + n2)a+ (m1 +m2)b ∈ K.
Also, we have −g = −(n1a+m1b) = (−n1)a+ (−m1)b ∈ K. Hence K
is a subgroup of Z.
For the second part of this question, there are a few cases to consider.
If a = 0, then K = ⟨b⟩ and if b = 0 then K = ⟨a⟩. If both a and b are
nonzero, then we claim that d = gcd(a, b) is in K and is a generator for
K, that is, for every z ∈ K we have z = k · d for some k ∈ Z. d ∈ K
since for nonzero integers a and b, gcd(a, b) can be written in the form
na+mb for some n, m ∈ Z.
To conclude, let z ∈ K. Then z = na +mb for some m,n ∈ Z. Now
since d divides a and b, we can write a = xd and b = yd for some
x, y ∈ Z. Then z = na + mb = nxd + myd = (nx + my)d, which is
exactly what we wanted to show (with k = nx+my).

6. What is the order of the element 9 in the group Z24? Does Z24 contain
an element of order 5?

Solution: The order of 9 in Z24 is the smallest integer k > 0 such that
k · 9 is congruent to 0 modulo 24. We have shown that this is equal to
24/ gcd(9, 24) = 24/3 = 8. Since the order of an element g in a finite
(cyclic) group G must divide into |G|, then there can be no element in
Z24 of order 5.

7. (a) Let G be a finite cyclic group that has at least 2 elements. Prove
that there is some g ∈ G such that |g| is a prime number.

(b) Let G be a finite group that has at least 2 elements. Prove that
there is some g ∈ G such that |g| is a prime number.

Solution:

For part (a), let a ∈ G with G = ⟨a⟩ and let |a| = n ≥ 2. Let p be a
prime divisor of n and let d = n/p. Then the element b = ad has order
p, since we know that the order of ad = n/ gcd(n, d) = n/d = p.

For part (b), let b ∈ G with b ̸= e and let H = ⟨b⟩, a finite cyclic
subgroup of G. By part (a), H has an element whose order is a prime
number, and hence so does G.
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8. Suppose that G is a group and let T = {g ∈ G | the order of g is finite}.
Show that if G is abelian, then T is a subgroup of G. Find an example
of a non-abelian group G for which T is not a subgroup.

Solution: We need to show that T contains the identity element e (it
does, since the order of e is equal to 1). We also need to show that T is
closed under the group operation: let a, b ∈ T . So |a| = n and |b| = m
for some natural numbers n and m. But then (ab)nm = anmbnm since
G is assumed to be abelian. We have that anm = (an)m = em = e and
bnm = (bm)n = en = e and so (ab)nm = e. This shows that the order of
ab is finite and so that ab ∈ T . Finally, we need to show that if a ∈ T
then a−1 ∈ T as well. But if |a| = n then (a−1)n = (an)−1 = e−1 = e
and so a−1 has finite order and hence is a member of T .

There are several (many) possible non-abelian groups that can be used
to show that T is not a subgroup in general. For example, in the group
GL2(R) consider the elements

a =

(
−1 1
0 1

)
and b =

(
−1 0
0 1

)
It can easily be verified that both a2 and b2 are equal to the identity
matrix, and so belong to T , but that for any k > 0,

(ab)k =

(
1 k
0 1

)
,

showing that (ab) has infinite order, and so does not belong to T . In
this case, T is not closed under the group operation and so can’t be a
subgroup of GL2(R).
Another example can be found by using the group of symmetries of the
disk (from the previous homework assignment). If we take a and b to
be reflections of the disk about different lines through the center of the
disk, then a2 = b2 = id, and so belong to T , but ab will be a rotation
of the disk by a certain angle that depends on the angle between the
two axes of reflection that determine a and b. In general, the resulting
symmetry ab will have infinite order.

9. A solution to the SageMath question can be found by clicking here.
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https://sagecell.sagemath.org/?z=eJxtj82KwkAQhO8D8w6Fe0lgCVkFT7rgKXkATwmrJEw7DuiMTCaCb7_zk6gLe2uq66uubr7KssQWOyGUU3fa9XRRna6sGW9ZG5Y_OT4g6KQ0oYluZ9AT3Jkggw3NMcicSZ8THVm7CtiLk28MXehK2mFVQmlUHjsaK8h6WBZxysLFwRmbgLQ1J5_igcnN2c0q7bLF_t2RMlMfqAGLz9mfc8ZZVWy67_DsnyeXvitntderYhh7mdTusI7ys1w9l_v_dGg606ghSZPtHAn0D_is-OtUacrMfwGWV3Nj&lang=sage&interacts=eJyLjgUAARUAuQ==

