MATH 3GR3 Assignment \#2 Solutions
 Due: Friday, October 6, by 11:59pm.

Upload your solutions to the Avenue to Learn course website.

1. Produce the Cayley table for the group $U(16)$, the group of units of \mathbb{Z}_{16}. Is this group cyclic?
Solution: $U(16)=\{1,3,5,7,9,11,13,15\}$ and its Cayley table is

\cdot	1	3	5	7	9	11	13	15
1	1	3	5	7	9	11	13	15
3	3	9	15	5	11	1	7	13
5	5	15	9	3	13	7	1	11
7	7	5	3	1	15	13	11	9
9	9	11	13	15	1	3	5	7
11	11	1	7	13	3	9	15	5
13	13	7	1	11	5	15	9	3
15	15	13	11	9	7	5	3	1

By inspection we see that $U(16)$ does not contain an element of order 8 , the order of this group, and so it is not cyclic. The elements $3,5,11$, and 13 all have order 4 and the elements 7,9 , and 15 all have order 2 .
2. Let G be a group and S a nonempty subset of G. Define the following relation on G :
$a \sim b$ if and only if $s_{1} a s_{2}=b$ for some $s_{1}, s_{2} \in S$.
(a) Show that if S is a subgroup of G then \sim is an equivalence relation on G.
(b) Compute the equivalence classes of \sim for the group of symmetries of the equilateral triangle, using the subgroup $S=\left\{i d, \mu_{1}\right\}$.
(c) Show, by example, that if S is not a subgroup, then \sim need not be an equivalence relation.

Solution: For (a) we need to show that this relation is reflexive, symmetric, and transitive when S is a subgroup of G :

- for $g \in G, g \sim g$ since ege $=g$ and $e \in S$,
- if $g \sim h$ then there are $s_{1}, s_{2} \in S$ with $h=s_{1} g s_{2}$. But then s_{1}^{-1}, $s_{2}^{-1} \in S$ and $g=s_{1}^{-1} h s_{2}^{-1}$, showing that $h \sim g$.
- if $g \sim h$ and $h \sim k$ then there are $s_{i} \in S, 1 \leq i \leq 4$ with $h=s_{1} g s_{2}$ and $k=s_{3} h s_{4}$. But then $s_{3} s_{1}, s_{2} s_{4} \in S$ and $k=\left(s_{3} s_{1}\right) g\left(s_{2} s_{4}\right)$, showing that $g \sim k$ as required.

For part (b), let's compute $[i d]_{\sim}$: an element of the group is \sim-related to $i d$ if it can be written in the form $s_{1} i d s_{2}$ for some $s_{1}, s_{2} \in S=\left\{i d, \mu_{1}\right\}$. So, there are four different possibilities for s_{1} and s_{2}. By trying them all we see that

$$
[i d]_{\sim}=\left\{i d, \mu_{1}\right\} .
$$

Since $i d \sim \mu_{1}$, then $\left[\mu_{1}\right]_{\sim}$ is also equal to $\left\{i d, \mu_{1}\right\}$. Using a similar approach, it can be shown that

$$
\left[\mu_{2}\right]_{\sim}=\left\{\mu_{2}, \mu_{3}, \rho_{1}, \rho_{2}\right\} .
$$

Since these two equivalence classes partition the entire group (it has exactly 6 elements), then they are the only equivalence classes of this equivalence relation.
For part (c), we can use the same group, but choose S to be a subset that is not a subgroup. For example, if we set $S=\left\{\mu_{1}\right\}$, then the resulting relation \sim is not reflexive (check that $\mu_{2} \nsim \mu_{2}$) and so it is not an equivalence relation.
3. Let $G=\mathbb{Z} \times \mathbb{Z}$. Define a binary operation \diamond on G as follows:

$$
(a, b) \diamond(c, d)=\left(a+c,(-1)^{c} b+d\right)
$$

(a) Show that G with the operation \diamond is a group.
(b) Is this group cyclic? Justify your answer.

Solution:

First note that the product of two pairs of integers is another pair of integers and so \diamond is a well-defined operation on G. The element $(0,0)$
can be seen to be the identity element with respect to \diamond. The following shows that \diamond is associative:

$$
\begin{aligned}
(a, b) \diamond((c, d) \diamond(e, f)) & =(a, b) \diamond\left(c+e,(-1)^{e} d+f\right) \\
& =\left(a+(c+e),(-1)^{(c+e)} b+\left((-1)^{e} d+f\right)\right) \\
& =\left((a+c)+e,(-1)^{e}\left((-1)^{c} b+d\right)+f\right) \\
& =\left(a+c,(-1)^{c} b+d\right) \diamond(e, f) \\
& =((a, b) \diamond(c, d)) \diamond(e, f)
\end{aligned}
$$

Finally, it can be checked that the inverse of the element (a, b) is $\left(-a,-(-1)^{-a} b\right)$.
We know that every cyclic group is abelian, and so to show that G is not cyclic, it suffices to note that $(0,1) \diamond(1,1)=(1,0) \neq(1,2)=$ $(1,1) \diamond(0,1)$. Alternatively, one can show directly that no pair (a, b) is a cyclic generator of G.
4. Let H and K be subgroups of the group G. Show that $H \cap K$ is a subgroup of G. Provide an example that shows that $H \cup K$ is not necessarily a subgroup of G.
Solution: Let H and K be subgroups of the group G and let $S=H \cap K$. Since e belongs to both H and K (any subgroup must contain the identity element) then $e \in S$. Suppose that $a, b \in S$. Then $a, b \in H$ and $a, b \in K$. Since H and K are closed under the group operation of G and are also closed under taking inverses, then $a b, a^{-1} \in H$ and $a b, a^{-1} \in K$. Thus $a b \in S$ and $a^{-1} \in S$. This establishes that S is closed under the group operation of G, is closed under taking inverses and contains the identity element of G. Thus S is a subgroup of G.
The union of two subgroups of a group is not necessarily a subgroup. For example in the group of symmetries of the rectangle, both $H=$ $\left\{i d, s_{1}\right\}$ and $K=\left\{i d, s_{2}\right\}$ are subgroups (s_{1} is reflection along the vertical axis and s_{2} is rotation by π radians), but $H \cup K=\left\{i d, s_{1}, s_{2}\right\}$ is not a subgroup since it is not closed under the group operation. This is because $s_{1} \circ s_{2}=s_{3}$, which is not a member of $H \cup K$.
5. Let a and b be integers and define $K=\{n a+m b \mid n, m \in \mathbb{Z}\}$. Show that K is a subgroup of \mathbb{Z}. Since every subgroup of \mathbb{Z} is cyclic, then K also has this property. Find a generator for K, and justify your answer.

Solution: To see that K is a subgroup of \mathbb{Z}, we show that $0 \in K, K$ is closed under addition, and for any $z \in K$ we have $-z \in K .0 \in K$ since $K=\{n a+m b \mid n, m \in \mathbb{Z}\}$ and taking $n=m=0$ we get $0 a+0 b=0 \in$ K. Now let $g, h \in K$. Then we have $g=n_{1} a+m_{1} b, h=n_{2} a+m_{2} b$. Then $g+h=n_{1} a+m_{1} b+n_{2} a+m_{2} b=\left(n_{1}+n_{2}\right) a+\left(m_{1}+m_{2}\right) b \in K$. Also, we have $-g=-\left(n_{1} a+m_{1} b\right)=\left(-n_{1}\right) a+\left(-m_{1}\right) b \in K$. Hence K is a subgroup of \mathbb{Z}.
For the second part of this question, there are a few cases to consider. If $a=0$, then $K=\langle b\rangle$ and if $b=0$ then $K=\langle a\rangle$. If both a and b are nonzero, then we claim that $d=\operatorname{gcd}(a, b)$ is in K and is a generator for K, that is, for every $z \in K$ we have $z=k \cdot d$ for some $k \in Z . d \in K$ since for nonzero integers a and $b, \operatorname{gcd}(a, b)$ can be written in the form $n a+m b$ for some $n, m \in \mathbb{Z}$.
To conclude, let $z \in K$. Then $z=n a+m b$ for some $m, n \in \mathbb{Z}$. Now since d divides a and b, we can write $a=x d$ and $b=y d$ for some $x, y \in \mathbb{Z}$. Then $z=n a+m b=n x d+m y d=(n x+m y) d$, which is exactly what we wanted to show (with $k=n x+m y$).
6. What is the order of the element 9 in the group \mathbb{Z}_{24} ? Does \mathbb{Z}_{24} contain an element of order 5 ?
Solution: The order of 9 in \mathbb{Z}_{24} is the smallest integer $k>0$ such that $k \cdot 9$ is congruent to 0 modulo 24 . We have shown that this is equal to $24 / \operatorname{gcd}(9,24)=24 / 3=8$. Since the order of an element g in a finite (cyclic) group G must divide into $|G|$, then there can be no element in \mathbb{Z}_{24} of order 5.
7. (a) Let G be a finite cyclic group that has at least 2 elements. Prove that there is some $g \in G$ such that $|g|$ is a prime number.
(b) Let G be a finite group that has at least 2 elements. Prove that there is some $g \in G$ such that $|g|$ is a prime number.
Solution:
For part (a), let $a \in G$ with $G=\langle a\rangle$ and let $|a|=n \geq 2$. Let p be a prime divisor of n and let $d=n / p$. Then the element $b=a^{d}$ has order p, since we know that the order of $a^{d}=n / \operatorname{gcd}(n, d)=n / d=p$.
For part (b), let $b \in G$ with $b \neq e$ and let $H=\langle b\rangle$, a finite cyclic subgroup of G. By part (a), H has an element whose order is a prime number, and hence so does G.
8. Suppose that G is a group and let $T=\{g \in G \mid$ the order of g is finite $\}$. Show that if G is abelian, then T is a subgroup of G. Find an example of a non-abelian group G for which T is not a subgroup.
Solution: We need to show that T contains the identity element e (it does, since the order of e is equal to 1). We also need to show that T is closed under the group operation: let $a, b \in T$. So $|a|=n$ and $|b|=m$ for some natural numbers n and m. But then $(a b)^{n m}=a^{n m} b^{n m}$ since G is assumed to be abelian. We have that $a^{n m}=\left(a^{n}\right)^{m}=e^{m}=e$ and $b^{n m}=\left(b^{m}\right)^{n}=e^{n}=e$ and so $(a b)^{n m}=e$. This shows that the order of $a b$ is finite and so that $a b \in T$. Finally, we need to show that if $a \in T$ then $a^{-1} \in T$ as well. But if $|a|=n$ then $\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}=e^{-1}=e$ and so a^{-1} has finite order and hence is a member of T.

There are several (many) possible non-abelian groups that can be used to show that T is not a subgroup in general. For example, in the group $G L_{2}(\mathbb{R})$ consider the elements

$$
a=\left(\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

It can easily be verified that both a^{2} and b^{2} are equal to the identity matrix, and so belong to T, but that for any $k>0$,

$$
(a b)^{k}=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right)
$$

showing that $(a b)$ has infinite order, and so does not belong to T. In this case, T is not closed under the group operation and so can't be a subgroup of $G L_{2}(\mathbb{R})$.

Another example can be found by using the group of symmetries of the disk (from the previous homework assignment). If we take a and b to be reflections of the disk about different lines through the center of the disk, then $a^{2}=b^{2}=i d$, and so belong to T, but $a b$ will be a rotation of the disk by a certain angle that depends on the angle between the two axes of reflection that determine a and b. In general, the resulting symmetry $a b$ will have infinite order.
9. A solution to the SageMath question can be found by clicking here.

