
MATH 3GR3 Assignment #3
Due: Friday, October 27, 11:59pm

Upload your solutions to the Avenue to Learn course website.
Detailed instructions will be provided on the course website.

1. Consider the following two elements of S7:

σ =

(
1 2 3 4 5 6 7
6 7 4 3 1 5 2

)
, τ =

(
1 2 3 4 5 6 7
1 3 4 5 7 6 2

)
.

(a) Decompose σ and τ into cycles.

(b) Compute στ and τσ.

(c) Compute the order of σ, τ , στ , and τσ.

(d) Determine the signs of σ, τ , στ , and τσ, i.e., determine if they are
even or odd permutations.

Solution:

σ =
(
1 6 5

) (
2 7

) (
3 4

)
, τ =

(
2 3 4 5 7

)
,

στ =
(
1 6 5 2 4

)
, τσ =

(
1 6 7 3 5

)
.

σ has order 6, while the other elements have order 5. σ is the product of
a 3-cycle (even) and two transpositions, and so is even. Any 5-cycle can
be written as a product of 4 transpositions and so the other elements
are also even.

2. Let σ = (a1, a2, . . . , am) and τ = (b1, b2, . . . , bn) be cycles of length m
and n respectively in the group SX for some set X. Suppose that

� {a1, a2, . . . , am} ≠ {b1, b2, . . . , bn} and that

� {a1, a2, . . . , am} ∩ {b1, b2, . . . , bn} ≠ ∅.

So σ and τ are not disjoint, but the sets of elements that they permute
are different.

Show that στ ̸= τσ.
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HINT: Since the elements being permuted are elements of some set
X, you may assume that X is just {1, 2, . . . , k} for some large enough
k (bigger than n + m), that σ = (1, 2, . . . ,m), that the element 1 is
equal to one of the bi’s and that τ is of the form (1, b2, . . . , bn) with
b2 > m. To use this hint, you should provide a justification for why
this reduction of the general case to this specific case is valid.

Solution:

It is not essential to make use of the hint, but here is a justification for
the reduction stated in the hint.

� Setting
X ′ = {a1, . . . , am, b1, . . . , bn},

we see that for x ∈ X\X ′, σ(x) = τ(x) = x and so στ(x) = τσ(x).
Also, for x ∈ X ′, σ(x), τ(x) ∈ X ′. So, whether or not σ and τ
commute will depend on whether or not their restrictions to X ′

do so. So, we may assume that X = X ′, which is a finite set, by
considering the permutations σ|X′ and τ |X′ in place of σ and τ .

We can assume that X is equal to the finite set {1, 2, . . . , k} for
a natural number k that is big enough. Implicitly we are using
that if two sets U and V are in bijective correspondence, then the
groups SU and SV are isomorphic.

� The elements a1, a2, . . . , am are distinct integers between 1 and
k, as are the elements b1, b2, . . . , bn. Since these two sets have at
least one common element, and are different, then by rearranging
the elements of these cycles, we may assume that a1 = b1 and
b2 /∈ {a1, a2, . . . , am}.

� By symmetry, we may assume that the m distinct elements ai,
1 ≤ i ≤ m are just the elements 1, 2, . . . ,m. (To fully justify
this, we could use Exercise #30 from Chapter 5 of the textbook.)
So we have that σ = (1, 2, . . . ,m) and τ = (1, b2, . . . , bn), where
b2 > m. Note that this part of the reduction isn’t all that useful,
since the conclusion that στ and τσ are different can be derived
just by knowing that b2 is not equal to any of the ai’s.

� Then στ(1) = σ(b2) = b2 and τσ(1) = τ(2) ̸= b2, since τ is one-to-
one and since τ(1) = b2 we can’t have that τ(2) = b2 as well. This
shows that the functions στ and τσ are different, as required.
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3. (a) We have seen that D3, the group of symmetries of the equilateral
triangle, is not abelian. Show that for n > 2, the dihedral group
Dn is not abelian.

(b) Find all elements a of the group D8 that commute with every
element of D8, i.e., find {a ∈ D8 : ax = xa for all x ∈ D8}. Is this
set a subgroup of D8?

Solution:

We have seen that the group Dn contains elements r and s of orders n
and 2 respectively such that srs = r−1. Since for n > 2, r ̸= r−1, this
implies that Dn is not abelian, since if it were, we would conclude that

r−1 = srs = rss = r(s2) = r,

which is not true. So, Dn is not abelian.

To solve part (b), the following identity will be useful:

ris = sr−i.

To see why this is true, we get from srs = r−1 that sris = r−i. This is
because

sris = srr . . . rrs = (srs)(srs)(srs)(srs) . . . (srs)(srs)(srs) = r−i,

where in the above, r occurs i-times and ss is inserted in between each
pair of r’s. It follows from this that ris = sr−i.

Let g be an element of D8 that commutes with every element of D8.
Clearly g = id has this property, and the claim is that the only other
element is g = r4. To see that r4 has this property, there are two
types of elements of D8 to consider: either ri or sri for some i between
0 and 7. In the first case, r4ri = r4+i = rir4. Actually, any power
of r commutes with all powers of r because ⟨r⟩ is a cyclic, and hence
abelian, group.

In the second case,

(r4)(sri) = sr−4ri = sr4+i = (sri)(r4),

as required. This uses that r4 = r−4. So, as claimed, r4 has this
property.
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To show that no other element of D8 commutes with all elements of the
group, consider the element rj with j ̸= 4 and with 1 ≤ j < 8. Using
the same identities as above, we get that (rj)(s) = sr−j ̸= (s)(rj), since
j ̸= 4. Similarly, (srj)(s) ̸= (s)(srj).

To conclude, the elements in question form the subset {id, r4}. Since
this set is closed under the group operation, taking inverses, and con-
tains the identity element, then it is a subgroup of D8.

You can check that the same sort of result holds for the groups D2n for
any n > 1.

4. For each pair of group G and subgroup H, describe the left and right
cosets of H in G:

(a) G = Dn, H = ⟨s⟩.

Solution: H = ⟨s⟩ = {id, s} since s has order 2 in Dn. A left
coset of H is of the form gH for some g ∈ Dn and so is equal to
rkH or srkH for some 0 ≤ k < n. (Since Dn consists of the 2n
elements of the form rk or srk, 0 ≤ k < n.)

The left coset rkH = {rk, rks} = {rk, sr−k} and the left coset
srkH = {srk, srks} = {srk, r−k}. So the left cosets of H are of
the form {rk, sr−k}, for 0 ≤ k < n.

Similarly, the right cosets of H are of the form {rk, srk}, 0 ≤ k <
n.

(b) G = GL2(Q), H = SL2(Q).

Solution: A left coset ofH in G is of the form A·H, where A is an
invertible 2×2 matrix with rational entries. Let d = det(A), some
non-zero rational number. Since H consists of 2×2 matrices with
rational entries having determinant equal to 1, then any matrix
in A ·H will have determinant equal to d = det(A). Conversely, if
B ∈ GL2(Q) and det(B) = d, then we can write B as A ·(A−1 ·B).
Since det(A−1 · B) = 1, then A−1 · B ∈ SL2(Q) and so B is in
the coset A · H. Thus the coset A · H consists of all matrices in
GL2(Q) that have determinant equal to d. Since A is an arbitrary
element of GL2(Q) it follows that the left cosets of H in G are
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precisely the subsets of G of the form {B : det(B) = d} for some
non-zero rational number d.

For similar reasons, it follows that the right cosets of H in G are
the same as the left cosets.

(c) G = A4, H = {(1), (123), (132)}.

Solution: Since the index of H in G is 4 (by Lagrange’s Theo-
rem), then there will be 4 left cosets and 4 right cosets of H in G.
Here they are: Left Cosets – {(1), (123), (132)}, {(124), (134), (14)(23)},
{(142), (234), (13)(24)}, {(143), (243), (12)(34)}, and Right Cosets
– {(1), (123), (132)}, {(124), (243), (13)(24)}, {(142), (143), (14)(23)},
{(234), (134), (12)(34)}.

(d) G = Z12, H = ⟨10⟩.

Solution: H = ⟨10⟩ = {0, 2, 4, 6, 8, 10} and so [G : H] = 2 (by
Lagrange’s Theorem). So, there will be two left cosets. Since G is
abelian, then these left cosets will also be right cosets. Since H is
one of the cosets, and there are only two of them, then the other
coset is just G \H = {1, 3, 5, 7, 9, 11}.

5. Recall that GL2(R) is the group of all 2 × 2 invertible matrices with
real entries. Let

� G =

{(
a b
0 c

)
∈ GL2(R) : ac ̸= 0

}
� H =

{(
1 x
0 1

)
: x ∈ R

}
(a) Show that G is a subgroup of GL2(R) and that H is a subgroup

of G.

Solution: Clearly G and H contain the identity matrix. We need
to show that both are closed under matrix multiplication and tak-

ing inverses. If

(
a b
0 c

)
and

(
u v
0 w

)
∈ G then their product is(

au av + bw
0 cw

)
, which is also a member of G (since aucw ̸= 0),

5



and the inverse of the first matrix is

(
1/a −b/(ac)
0 1/c

)
, which is

also a member of G. Thus G is a subgroup of GL2(R).

If

(
1 x
0 1

)
and

(
1 y
0 1

)
∈ H then their product is

(
1 x+ y
0 1

)
,

which is also a member of H, and the inverse of the first matrix is(
1 −x
0 1

)
, which is also a member of H. Thus H is a subgroup

of G (and hence also of GL2(R)).
(b) Show that every left coset of H in the group G is equal to a right

coset of H in G.

Solution: Let

(
a b
0 c

)
∈ G and consider the left coset

(
a b
0 c

)
H.

It consists of all matrices of the form(
a b
0 c

)(
1 x
0 1

)
=

(
a ax+ b
0 c

)
,

for any number x ∈ R.

Similarly, the right coset H

(
a b
0 c

)
consists of all matrices of

the form (
1 x
0 1

)(
a b
0 c

)
=

(
a cx+ b
0 c

)
,

for any number x ∈ R. Since both a and c are non-zero then any
real number can be expressed in the form ax+ b and in the form
cx+ b, and so these two sets of matrices are identical, and consist

of all matrices of the form

(
a x
0 c

)
, for any real number x.

(c) Show that for

(
a b
0 c

)
,

(
u v
0 w

)
∈ G, the two left cosets(

a b
0 c

)
H and

(
u v
0 w

)
H are equal if and only if a = u and

c = w.

Solution:
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We know that in general, two left cosets g1H and g2H of a sub-
group are equal if and only if g−1

1 g2 ∈ H. In this case,(
a b
0 c

)−1(
u v
0 w

)
=

(
1/a −b/(ac)
0 1/c

)(
u v
0 w

)
=

(
u/a v/a− (bw)/(ac)
0 w/c

)
.

This matrix will belong to H if and only if u/a = 1 and w/c = 1,
or u = a and w = c.

Alternatively, we know from part (b) that the left coset

(
a b
0 c

)
H

consists of all matrices of the form

(
a x
0 c

)
, for any real number

x. We also know that

(
a b
0 c

)
H and

(
u v
0 w

)
H are equal if

and only if

(
u v
0 w

)
belongs to

(
a b
0 c

)
H. From this it follows

that a = u and c = w.

(d) H is also a subgroup of GL2(R) since it has been established in
(a) that H is a subgroup of G and G is a subgroup of GL2(R).
Are the left cosets of H in GL2(R) equal to right cosets of H in
GL2(R)?

Solution: No: Just find some matrix A ∈ GL2(R) such that

A ·H ̸= H · A. For example if A =

(
1 0
1 1

)
then A ·H consists

of all matrices of the form(
1 0
1 1

)(
1 x
0 1

)
=

(
1 x
1 x+ 1

)
,

and H · A consists of all matrices of the form(
1 x
0 1

)(
1 0
1 1

)
=

(
x+ 1 x
1 1

)
,

for any real number x. Since these two sets of matrices are differ-
ent, this establishes that the left coset A · H is not equal to the
right coset H · A.
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6. Let G be a group of order 343 = 73. Show that G contains an element
of order 7.

Solution:

Choose any g ∈ G with g ̸= e and let H = ⟨g⟩, the cyclic subgroup
of G generated by g. By Lagrange’s Theorem, the order of H divides
73, the order of G. Since H is a finite cyclic group, then by question
#7 on the previous assignment, we know that it contains an element
of prime order. But this prime number must divide 73 and so is equal
to 7, as required.

7. Let G be a finite group that contains elements of order 1 through 10.
What is the smallest possible order of G? Provide an example of a
group with this property having this order.

Solution:

By Lagrange’s theorem the order of G must have all numbers less than
or equal to 10 as divisors. This is because for all g ∈ G, |g| divides |G|.
The smallest number with this property is: 5× 7× 8× 9 = 2520 (the
least common multiple of the numbers 1 through 10). The cyclic group
Z2520 is an example of such a group.

8. Read over the SageMath tutorials at the ends of Chapters 4, 5, and 6
and perform the following calculations. To submit your calculations,
either take a screenshot (or maybe a picture) of the webpage that con-
tains them or include a copy of the link (i.e., URL) that is produced by
the SageCell “share” button, or just copy and paste your commands
and the results into the document that you upload to Avenue to Learn.

(a) Produce the alternating group A7 using the “AlternatingGroup”
command and then create and list the elements of the cyclic sub-
group of A7 that is generated by the (even) permutation

(1, 2, 3)(4, 7)(5, 6).

You will need to use the “subgroup” function to create the sub-
group.
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(b) Produce all of the subgroups of the group A4 and list all of the
orders of these subgroups. Do not list the subgroups, just their
orders. Verify that A4 has no subgroup of order 6 (you don’t need
to include this in your solution, just look at your list to verify this.
We claimed in the lectures that even though |A4| = 12, A4 doesn’t
have a subgroup of order 6, a divisor of 12. A description of how
to do this can be found in the Subgroups subsection of Section 6.6
of the textbook.

Solution:

For the SageMath question, click on the following link to see a solution:
click here

Supplementary problems from the textbook
(not to be handed in)

� From Chapter 5, questions 1, 3, 6, 9, 23, 30, 31

� From Chapter 6, questions 3, 5, 10, 16, 17
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https://sagecell.sagemath.org/?z=eJx9jzELwjAQhXfB_3C0ywVCQVutCA6d7OpcRCqeMdAmkqT_31xEHRS3u3vv8b7LG--1MiOZAHkp4TCRD9oa2AD2Yj5rathBMwRypg_aqL2z0x3rqMTY2LNYY4YLuZSlwErWAldyLTI2TOckF3FQKdalzDFqd6dNwCzcCGggbvdgr8D7yw29o0zyWgzaBxQxNp_lf3jPzPsLt2IaxcqbxeOHoiVH3JbqrbuQ-4JJh-ZUbfmx7plri-SNYHC1DlrQBrw6PgBkdWf9&lang=sage&interacts=eJyLjgUAARUAuQ==

