
MATH 3GR3 Assignment #4 Solutions
Due: Friday, 10 November, by 11:59pm

1. Let G be a group with |G| < 300. Suppose that G has a subgroup H
with order 24 and a subgroup K with order 54. Determine the exact
value of |G|.

Solution: From Lagrange’s theorem we know that both 24 and 54 are
divisors of |G|. The only number less than 300 with this property is
216, the least common multiple of 24 and 54. Thus |G| = 216.

2. For each pair of groups G and H, determine if they are isomorphic:

(a) G = R∗, H = C∗.

Solution: They are not isomorphic. In the group C∗, every el-
ement has a square root, i.e., for every g ∈ C∗, there is some
h ∈ C∗ such that hh = g. This property does not hold in
the group R∗, and so the two groups cannot be isomorphic. In
more detail, if ϕ : C∗ → R∗ is an isomorphism then let z ∈ C∗

with ϕ(z) = −1. Let w be the square root of z in C∗. Then
−1 = ϕ(z) = ϕ(ww) = ϕ(w)2. This can’t happen, since the
square of any real number is non-negative.

(b) G = U(14), H = U(18).

Solution: Both of these groups are 6 element cyclic groups, and
so are isomorphic (and isomorphic to Z6. To see that both are
cyclic, it suffices to find elements of order 6 in each group. In
U(14), the element 3 has order 6 and in U(18) the element 5 has
order 6.

(c) G = Z, H = R.

Solution: These groups have different cardinalities, the first is
countably infinite, while the second is uncountable. So, there
is no bijection between the two groups and so they cannot be
isomorphic. One can also prove this by noting that Z is cyclic,
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while R is not (for any non zero real number r, ⟨r⟩ is not equal
to the set of all real numbers: since ⟨r⟩ = {kr | k ∈ Z}, then, for
example, the real number r/2 /∈ ⟨r⟩.).

(d) G = Z16 and H = Z4 × Z4.

Solution: The first group is a cyclic group of order 16, while the
second group is a non-cyclic group of order 16, so the two groups
are not isomorphic. Each element of the second group has order
at most 4 and so is not cyclic.

3. Show that the group U(4)× U(5) is isomorphic to the group U(20).

Solution: It suffices to show that U(20) contains two subgroups H
and K that are isomorphic to U(4) and U(5) respectively and such that
U(20) is the internal direct product ofH andK. Then by Theorem 9.27
we can conclude that U(20) ∼= H×K ∼= U(4)×U(5). This makes use of
the fact that if we have G1

∼= G2 and G3
∼= G4 then G1×G3

∼= G2×G4.

Since U(4) = {1, 3} and U(5) = {1, 2, 3, 4} then it can be seen that
U(4) ∼= Z2 and U(5) ∼= Z4 (since the element 2 in U(5) has order 4).
So to find suitable H and K we need to look for elements of orders 2
and 4 that generate them. In U(20) the element h = 11 has order 2
and the element k = 3 has order 4. If we set H = ⟨11⟩ and K = ⟨3⟩
then it can be seen that H and K satisfy the internal direct product
conditions, and so we conclude that U(20) ∼= H ×K ∼= U(4)× U(5).

4. Let G1 and G2 be groups and suppose that H1 is a subgroup of G1 and
H2 is a subgroup of G2. Show that H1 ×H2 is a subgroup of G1 ×G2.
Find a subgroup of Z4 × Z2 that is not of this form.

Solution: Let H1 be a subgroup of G1 and H2 a subgroup of G2.
To show that H1 × H2 is a subgroup of G1 × G2 we need to show
that it contains the identity element of G1 × G2 and is closed under
multiplication and taking inverses. Since bothH1 andH2 are subgroups
of G1 and G2 respectively, then eG1 is in H1 and eG2 is in H2 and so
(eG1 , eG2), the identity element of G1×G2, is in H1×H2. If (h1, h2) and
(h′

1, h
′
2) are in H1 ×H2 then (h1, h2)(h

′
1, h

′
2) = (h1h

′
1, h2h

′
2) ∈ H1 ×H2
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since both H1 and H2 are closed under multiplication. Thus H1×H2 is
also closed under multiplication. The inverse of (h1, h2) is the element
(h−1

1 , h−1
2 ), which is in H1 ×H2 since h−1

1 ∈ H1 and h−1
2 ∈ H2, and so

H1 ×H2 is closed under taking inverses. Thus H1 ×H2 is a subgroup
of G1 ×G2.

The set H = {(0, 0), (2, 1)} is a subgroup of Z4 × Z2, since it contains
the identity element of that group and is closed under addition and the
taking of inverses. H is not of the form H1 × H2 for some subgroups
H1 of Z4 and H2 of Z2 since the only subgroups of this form of order 2
are {0, 2} × {0} and {0} × {0, 1}.
Alternatively, any subgroup of Z4 ×Z2 that is of the form H1 ×H2 for
some subgroups H1 of Z4 and H2 of Z2 and that contains (2, 1) would
also have to contain (2, 0) and (0, 1). So the given subgroup H is not
of this form.

5. Let G be a group, H a subgroup of G, and g ∈ G.

(a) Show that the map f : G → G defined by f(x) = gxg−1 is an
isomorphism from G to G.

Solution: f is one-to-one since if f(x) = f(y) then gxg−1 =
gyg−1. After cancelling g and g−1, we get that x = y. f is onto,
since if y ∈ G then f(g−1yg) = y. For x, y ∈ G, f(xy) = gxyg−1 =
gxg−1gyg−1 = f(x)f(y). Thus, f is an isomorphism.

(b) Show that the set gHg−1 = {ghg−1 : h ∈ H} is a subgroup of G,
if H is a subgroup of G.

Solution: e ∈ gHg−1 since e ∈ H and e = geg−1. If x, y ∈
gHg−1 then x = gug−1 and y = gvg−1 for some u, v ∈ H. Then
xy = gug−1gvg−1 = g(uv)g−1 ∈ gHg−1. Also, x−1 = (gug−1)−1 =
gu−1g−1 ∈ gHg−1. Thus gHg−1 is a subgroup of G.

(c) Show that
⋂
g∈G

gHg−1 is a normal subgroup of G if H is a subgroup

of G.

Solution: Let K =
⋂
g∈G

gHg−1. Since the intersection of a collec-

tion of subgroups of G is also a subgroup of G, then by part (b)
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it follows that K is a subgroup of G. To show that K is a normal
subgroup of G, it suffices to show that for all a ∈ G, aKa−1 ⊆ K.
By the definition of K, this amounts to showing that if k ∈ K
and g ∈ G, then the element aka−1 ∈ gHg−1. Since k ∈ K, then
in particular, k ∈ uHu−1, where u = a−1g and so k = uyu−1 for
some y ∈ H. Then aka−1 = auyu−1a−1 = gyg−1 ∈ gHg−1, as
required.

6. Show that every group of order 4 is isomorphic to Z4 or to Z2 × Z2.

Solution: Let G be a group of order 4. If G contains an element of
order 4 then it is cyclic, and so is isomorphic to the cyclic group Z4.
If G does not have an element of order 4, then by Lagrange’s theorem,
all of the non-identity elements of G have order 2. So G = {e, a, b, c}
for some elements a, b, and c of order 2. If one fills in the Cayley table
for G, we are forced to conclude that ab = c = ba, ac = b = ca, and
bc = a = cb. These equalities, along with the fact that e is the identity
element and the other elements have order 2, completely determine the
Cayley table for G. It can now be checked that the map from G to
Z2 × Z2 that maps e to (0, 0), a to (0, 1), b to (1, 0) and c to (1, 1) is
an isomorphism.

One can also solve this question by referring to the solution to question
#3 of Assignment #1. In that question, it is shown that up to a
rearrangement of elements (i.e., up to isomorphism), there are exactly
two distinct Cayley tables for a group of order 4. One of these tables
contains an element of order 4, and so such a group is isomorphic to
Z4, while the other one can be seen to be isomorphic to Z2 × Z2 (by
elimination, it has to be isomorphic to this group, since it is not cyclic).

7. (a) Show that H = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is a normal
subgroup of A4.

Solution: Since |A4| = 12 and |H| = 4 then there are three left
and three right cosets of H in A4. They are: H,

(1 2 3)H = {(1 2 3), (1 3 4), (2 4 3), (1 4 2)} = H(1 2 3),

4



and

(1 3 2)H = {(1 3 2), (2 3 4), (1 2 4), (1 4 3)} = H(1 3 2).

So all left cosets are right cosets.

(b) Show that H is isomorphic to Z2 × Z2.

Solution: From the previous question, we know that H is iso-
morphic to one of Z4 or Z2 ×Z2, since H is a four element group.
Since all of the elements of H have order 1 or 2, it follows that H
is not cyclic and so must be isomorphic to Z2 × Z2.

(c) Produce the Cayley table of the quotient group A4/H.

Solution: The quotient has size 3 and so is isomorphic to the
cyclic group Z3. Here is its Cayley table:

· H (1 2 3)H (1 3 2)H
H H (1 2 3)H (1 3 2)H

(1 2 3)H (1 2 3)H (1 3 2)H H
(1 3 2)H (1 3 2)H H (1 2 3)H

(d) Show that H is the only non-trivial normal subgroup of A4.

Solution: We’ve seen that A4 does not have a subgroup of order 6
and so by Lagrange’s theorem, we need only consider subroups of
size 2, 3, or 4. If K ≤ A4 and |K| = 2, then K = {id, σ} for some
element σ ∈ A4 of order 2. There are 3 possibilities for σ, and in
each case, it can be shown that K is not normal. For example, if
σ = (1 2)(3 4), then the left coset (1 2 3)K = {(1 2 3), (1 3 4)},
while the right coset K(1 2 3) = {(1 2 3), (2 4 3)}. If |K| = 3
then K is generated by an element τ of A4 of order 3. There are 8
possibilities for τ , and in each case, it can be shown that K is not
normal. For example, if τ = (1 2 3), thenK = {id, (1 2 3), (1 3 2)}.
The left coset (2 3 4)K = {(2 3 4), (1 3)(2 4), (1 4 2)} while the
right coset K(2 3 4) = {(2 3 4), (1 2)(3 4), (1 3 4)}.

8. LetG be a group and define Z(G) to be the subset {g ∈ G : gx = xg for all x ∈ G}.
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(a) Show that Z(G) is a normal subgroup of G.

Solution: Z(G) contains the identity element, since it commutes
with every element of G. If a, b ∈ Z(G), and if g ∈ G then

(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab).

This shows that Z(G) is closed under products.To show that
a−1 ∈ Z(G), we note that ag = ga implies that g−1a = ag−1,
by cancellation. From this it follows that a−1 ∈ Z(G). Thus
Z(G) is a subgroup of G.

To show that Z(G) is normal, it suffices to show that if g ∈ G then
gZ(G)g−1 ⊆ Z(G). If z ∈ Z(G), then gzg−1 = zgg−1 = z ∈ Z(G),
since z commutes with all elements from G, and in particular with
the element g.

(b) Compute Z(D4).

Solution: Note, this is a simpler version of question #3 (b) from
the previous assignment. The only elements of

D4 = {e, r, r2, r3, s, sr, sr2, sr3}

that commute with all other elements of D4 are e and r2. So,
Z(D4) = {e, r2}. To see this, we can use that r4 = s2 = e and
that srs = r−1. It follows that r2ri = r2+i = ri+2 = rir2 for any
i, and

r2(sri) = r(rs)ri = r(sr−1)ri = (rs)ri−1 = (sr−1)ri−1 = sri−2,

while (sri)r2 = sri+2. Since i − 2 and i + 2 differ by exactly 4,
then in D4, r

i−2 = ri+2 for any i. So r2 ∈ Z(D4).

To see that there are no other elements in Z(D4), we need to show
that every other element of D4 fails to commute with all elements.
The following inequalities demonstrate this: sr = r−1s ̸= rs,
(r3)(sr) = r2s ̸= s = (sr)(r3), and (sr3)(sr2) = s(r3r2)s = srs =
r−1 ̸= r = (sr2)(sr3).
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(c) Compute the Cayley table for the quotient group D4/Z(D4).

Solution: Since |D4| = 8 and |Z(D4)| = 2, it follows that there
are four left cosets of Z(D4) in D4 and that |D4/Z(D4)| = 4.
From an earlier question, it follows that D4/Z(D4) is isomorphic
to one of Z4 or Z2 × Z2. The four left cosets of Z = Z(D4) are:
Z = {e, r2}, rZ = {r, r3}, sZ = {s, sr2}, and srZ = {sr, sr3} and
the Cayley table is:

· Z rZ sZ srZ
Z Z rZ sZ srZ
rZ rZ Z srZ sZ
sZ sZ srZ Z rZ
srZ srZ sZ rZ Z

Since every element in this quotient has order 1 or 2, it follows
that it is isomorphic to Z2 × Z2.

9. Let G be a group and let D = {(g, g) : g ∈ G}, a subgroup of G×G.

(a) Show that D is isomorphic to the group G.

Solution:

Let f : G → D be defined by f(g) = (g, g). Then f is a bijection
since it is clearly one-to-one and onto. It is an isomorphism since
f(gh) = (gh, gh) = (g, g)(h, h) = f(g)f(h).

(b) Show that D is a normal subgroup of the group G×G if and only
if G is an abelian group.

Solution: First, D is a subgroup of G × G since it is the image
of the isomorphism from G to G×G that maps g to (g, g). This
can also be checked by showing that D satisfies the conditions for
being a subgroup.

If G is abelian, then so is G × G (this can be checked, using
the definition of the group operation on G × G). Since every
subgroup of an abelian group is normal, it follows that D is a
normal subgroup of G×G. Conversely, suppose thatD is a normal
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subgroup and let a, b ∈ G. Since D is normal, then the element
(a, b)(a, a)(a, b)−1 is a member of D, since (a, a) is. But

(a, b)(a, a)(a, b)−1 = (a, b)(a, a)(a−1, b−1) = (aaa−1, bab−1) = (a, bab−1).

Since elements of D are of the form (x, x) then a = bab−1 and so
ab = ba. This shows that G is abelian if D is a normal subgroup.

10. Read over the SageMath tutorials at the ends of Chapters 6 and 9 and
perform the following calculations. To submit your calculations, either
take a screenshot (or maybe a picture) of the webpage that contains
them or include a copy of the link (i.e., URL) that is produced by the
SageCell “share” button, or just copy and paste your commands and
the results into the document that you upload to Avenue to Learn.

(a) Compute ϕ(2023), where ϕ is the Euler ϕ-function.

(b) Produce the cyclic group G of order 40 using the “CyclicPer-
mutationGroup” function and the group D20 and then use the
“is isomorphic” function to determine if these two groups are iso-
morphic.

Solution: For the SageMath question, click on the following link to
see a solution: link

Supplementary problems from the textbook
(not to be handed in)

� From Chapter 9, questions 16, 19, 22, 23, 48, 52

� From Chapter 10, questions 1, 2, 4, 5, 6, 9, 13
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https://sagecell.sagemath.org/?z=eJxNjrEKwjAURfdC_-HSKQGVUp0K4mAkuHVwl5hGGkibkCaCf-8LDrqed3jnhmiXxJpBxQSmeA_cJoNLdiZuw2TxzItO1i8wL-WySmaESujabg-79mg2MMW9k8sK5byu6kriiPNbO6sHE-ecVHkho8-BHVoyBN2FncwYlfviruDwP-ZBY64rJHX87CMFNJKHOFFT7ux6_3EmOP8A6yE-7w==&lang=sage&interacts=eJyLjgUAARUAuQ==

