MATH 3GR3 Assignment #5 Due: Friday, November 24 by 11:59pm

- 1. Suppose that G is a cyclic group and that N is a subgroup of G. Show that G/N is also a cyclic group.
- 2. Let G and H be groups and let $M \leq G$ and $N \leq H$.
 - (a) Show that the map $f : G \times H \to G/M \times H/N$ defined by f((g,h)) = (gM,hN) is an onto group homomorphism.
 - (b) Show that the kernel of f is $M \times N$.
 - (c) Prove that $(G \times H)/(M \times N)$ is isomorphic to $G/M \times H/N$. (Hint: Use the First Isomorphism Theorem.)
- 3. Determine which of the following maps are group homomorphisms. For those that are, compute their kernels.
 - (a) For n > 1, $f : \mathbb{Z} \to \mathbb{Z}_n$ is defined by $f(m) = [m]_n$.
 - (b) $f : \mathbb{R}^* \to \mathbb{Z}_2$ defined by f(r) = 0 if r > 0 and f(r) = 1 if r < 0.
 - (c) $f: \mathbb{Q} \to \mathbb{Q}$ defined by f(q) = |q|.
- 4. Let F be the group of all functions $f : \mathbb{Z} \to \mathbb{Z}$ with group operation + defined by (f + g)(x) = f(x) + g(x). For this problem you do not need to show that F is a group under this operation. Use the First Isomorphism Theorem to show that $N = \{f \in F : f(3) = 0\}$ is a normal subgroup of F and that F/N is isomorphic to \mathbb{Z} .
- 5. Let $N = \{-1, 1\}$, a subgroup of the group \mathbb{Q}^* , and let \mathbb{Q}^+ be the subgroup of \mathbb{Q}^* consisting of all positive rational numbers. Use the First Isomorphism Theorem to show that \mathbb{Q}^*/N is isomorphic to \mathbb{Q}^+ by constructing a surjective homomorphism from \mathbb{Q}^* to \mathbb{Q}^+ that has kernel N.
- 6. Let G be a group and N a normal subgroup of G. Show that if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$, then the factor group G/N is abelian. Is the converse true?

Supplementary problems from the textbook (not to be handed in)

From Chapter 11, questions 2, 3, 4, 6, 8, 9, 10, 13, 16