MATH 3GR3 Assignment \#5

Due: Friday, November 24 by 11:59pm

1. Suppose that G is a cyclic group and that N is a subgroup of G. Show that G / N is also a cyclic group.
2. Let G and H be groups and let $M \unlhd G$ and $N \unlhd H$.
(a) Show that the map $f: G \times H \rightarrow G / M \times H / N$ defined by $f((g, h))=(g M, h N)$ is an onto group homomorphism.
(b) Show that the kernel of f is $M \times N$.
(c) Prove that $(G \times H) /(M \times N)$ is isomorphic to $G / M \times H / N$. (Hint: Use the First Isomorphism Theorem.)
3. Determine which of the following maps are group homomorphisms. For those that are, compute their kernels.
(a) For $n>1, f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is defined by $f(m)=[m]_{n}$.
(b) $f: \mathbb{R}^{*} \rightarrow \mathbb{Z}_{2}$ defined by $f(r)=0$ if $r>0$ and $f(r)=1$ if $r<0$.
(c) $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(q)=|q|$.
4. Let F be the group of all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with group operation + defined by $(f+g)(x)=f(x)+g(x)$. For this problem you do not need to show that F is a group under this operation. Use the First Isomorphism Theorem to show that $N=\{f \in F: f(3)=0\}$ is a normal subgroup of F and that F / N is isomorphic to \mathbb{Z}.
5. Let $N=\{-1,1\}$, a subgroup of the group \mathbb{Q}^{*}, and let \mathbb{Q}^{+}be the subgroup of \mathbb{Q}^{*} consisting of all positive rational numbers. Use the First Isomorphism Theorem to show that \mathbb{Q}^{*} / N is isomorphic to \mathbb{Q}^{+} by constructing a surjective homomorphism from \mathbb{Q}^{*} to \mathbb{Q}^{+}that has kernel N.
6. Let G be a group and N a normal subgroup of G. Show that if $a b a^{-1} b^{-1} \in N$ for all $a, b \in G$, then the factor group G / N is abelian. Is the converse true?

> Supplementary problems from the textbook (not to be handed in)

From Chapter 11, questions $2,3,4,6,8,9,10,13,16$

