MATH 3GR3 Assignment \#5 Solutions
 Due: Friday, November 24 by 11:59pm

1. Suppose that G is a cyclic group and that N is a subgroup of G. Show that G / N is also a cyclic group.

Solution: Let g be a cyclic generator of G. Then the element $g N$ is a cyclic generator of G / N. To see this, let $C \in G / N$. Then C is a left coset of N and so $C=h N$ for some $h \in G$. Since $G=\langle g\rangle$ then $h=g^{n}$ for some $n \in \mathbb{Z}$. Then $(g N)^{n}=g^{n} N=h N=C$ and so $C \in\langle g N\rangle$. This shows that every element of G / N is equal to some power of $g N$ and so G / N is cyclically generated by $g N$.
2. Let G and H be groups and let $M \unlhd G$ and $N \unlhd H$.
(a) Show that the map $f: G \times H \rightarrow G / M \times H / N$ defined by $f((g, h))=(g M, h N)$ is an onto group homomorphism.

Solution: To see that this map is a group homomorphism, let g_{1}, $g_{2} \in G$ and $h_{1}, h_{2} \in H$. Then

$$
\begin{aligned}
f\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)\right) & =f\left(\left(g_{1} g_{2}, h_{1} h_{2}\right)\right)=\left(g_{1} g_{2} M, h_{1} h_{2} N\right) \\
& =\left(g_{1} M g_{2} M, h_{1} N h_{2} N\right)=\left(g_{1} M, h_{1} N\right)\left(g_{2} M, h_{2} N\right) \\
& =f\left(\left(g_{1}, h_{1}\right)\right) f\left(\left(g_{2}, h_{2}\right)\right) .
\end{aligned}
$$

This map is onto since any element of $G / M \times H / N$ is of the form $(g M, h N)$ for some $g \in G$ and $h \in H$. The element (g, h) in $G \times H$ is mapped to $(g M, h N)$ under f.
(b) Show that the kernel of f is $M \times N$.

Solution: The element (g, h) will be in the kernel of f if and only if $f((g, h))=(M, N)$, the identity element of $G / M \times H / N$. Since $f((g, h))=(g M, h N)$ then (g, h) will be in the kernel if and only if $(g M, h N)=(M, N)$, which is equivalent to $g M=M$ and $h N=N$, which is equivalent to $g \in M$ and $h \in N$. Thus the kernel is equal to $M \times N$.
(c) Prove that $(G \times H) /(M \times N)$ is isomorphic to $G / M \times H / N$. (Hint: Use the First Isomorphism Theorem.)

Solution: In parts (a) and (b) we've established that f is an onto homomorphism with kernel equal to $M \times N$. By the First Isomorphism Theorem, $(G \times H) / \operatorname{ker}(f)$ is isomorphic to the image of f and so $(G \times H) /(M \times N)$ is isomorphic to $G / M \times H / N$.
3. Determine which of the following maps are group homomorphisms. For those that are, compute their kernels.
(a) For $n>1, f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is defined by $f(m)=[m]_{n}$.

Solution: This is a group homomorphism, since for $m, k \in \mathbb{Z}$,

$$
f(m+k)=[m+k]_{n}=[m]_{n}+[k]_{n}=f(m)+f(k) .
$$

The kernel of this map is the set of all m with $[m]_{n}=[0]_{n}=$ $n \mathbb{Z}$. (It follows that since this map is onto, then by the First Isomorphism Theorem, $\mathbb{Z} / n \mathbb{Z}$ is isomorphic to \mathbb{Z}_{n}. In fact the groups are equal.)
(b) $f: \mathbb{R}^{*} \rightarrow \mathbb{Z}_{2}$ defined by $f(r)=0$ if $r>0$ and $f(r)=1$ if $r<0$.

Solution: To prove that $f(r \cdot s)=f(r)+f(s)$, we can consider 4 cases:

- $r, s>0$: then $r \cdot s>0$ and so $f(r \cdot s)=0=0+0=f(r)+f(s)$.
- $r, s<0$: then $r \cdot s>0$ and so $f(r \cdot s)=0=1+1=f(r)+f(s)$.
- $r>0$ and $s<0$: then $r \cdot s<0$ and so $f(r \cdot s)=1=0+1=$ $f(r)+f(s)$.
- $r<0$ and $s>0$: then $r \cdot s<0$ and so $f(r \cdot s)=1=1+0=$ $f(r)+f(s)$.
Thus f is a group homomorphism. The kernel is the set $\{r: r>$ $0\}$.
(c) $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(q)=|q|$.

Solution: This is not a group homomorphism since the equation $f\left(q_{1}+q_{2}\right)=f\left(q_{1}\right)+f\left(q_{2}\right)$ does not hold for all $q_{1}, q_{2} \in \mathbb{Q}$. A counter example is

$$
f(1+(-1))=f(0)=|0|=0 \neq 2=1+1=f(1)+f(-1) .
$$

4. Let F be the group of all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with group operation + defined by $(f+g)(x)=f(x)+g(x)$. For this problem you do not need to show that F is a group under this operation. Use the First Isomorphism Theorem to show that $N=\{f \in F: f(3)=0\}$ is a normal subgroup of F and that F / N is isomorphic to \mathbb{Z}.

Solution: To show that N is a normal subgroup of F and to establish the isomorphism, it suffices to find an onto homomorphism ϕ from F to \mathbb{Z} that has kernel equal to N. Both results will then follow from the First Isomorphism Theorem. The function $\phi: F \rightarrow \mathbb{Z}$ defined by $\phi(f)=f(3)$ is a map from F to \mathbb{Z}. It is onto, since for any integer $n, \phi(f)=n$, where f is the constant function on \mathbb{Z} that takes on the value $n . \phi$ is a homomorphism since

$$
\phi(f+g)=(f+g)(3)=f(3)+g(3)=\phi(f)+\phi(g) .
$$

The kernel of ϕ is $\{f \in F \mid \phi(f)=0\}=N$, as required.
5. Let $N=\{-1,1\}$, a subgroup of the group \mathbb{Q}^{*}, and let \mathbb{Q}^{+}be the subgroup of \mathbb{Q}^{*} consisting of all positive rational numbers. Use the First Isomorphism Theorem to show that \mathbb{Q}^{*} / N is isomorphic to \mathbb{Q}^{+} by constructing a surjective homomorphism from \mathbb{Q}^{*} to \mathbb{Q}^{+}that has kernel N.

Solution:

As in the previous question, it suffices to find an onto homomorphism ϕ from \mathbb{Q}^{*} to \mathbb{Q}^{+}that has kernel equal to N. The following map will work: $\phi(q)=|q|$, so ϕ is the " absolute value function". The kernel of ϕ is the set of q with $\phi(q)=1$, the identity element of \mathbb{Q}^{+}. But this is just the set N, as required. Using the properties of the absolute value function, it is elementary to show that ϕ is an onto homomorphism, so by the First Isomorphism Theorem, \mathbb{Q}^{*} / N is isomorphic to \mathbb{Q}^{+}.
6. Let G be a group and N a normal subgroup of G. Show that if $a b a^{-1} b^{-1} \in N$ for all $a, b \in G$, then the factor group G / N is abelian. Is the converse true?

Solution: The following argument establishes the result and also shows that the converse is true. Given a group G and normal subgroup N with the stated property,

- G / N is abelian if and only if
- for all $a, b \in G,(a N)(b N)=(b N)(a N)$, if and only if
- for all $a, b \in G,(a b N)=(b a N)$ if and only if
- for all $a, b \in G,(a b)(b a)^{-1} \in N$ (by Lemma 6.3), if and only if
- for all $a, b \in G, a b a^{-1} b^{-1} \in N$.

Supplementary problems from the textbook (not to be handed in)

From Chapter 11, questions $2,3,4,6,8,9,10,13,16$

