# MATH 3GR3 Assignment \#6 <br> Due: Wednesday, December 6 by 11:59pm 

1. Consider the ring $\mathbb{Z}_{20}$. List all of the ideals of this ring. List all of the units of this ring.
2. For each pair of rings, determine if they are isomorphic.
(a) $\mathbb{R}$ and $\mathbb{C}$.
(b) $\mathbb{Z}$ and $\mathbb{Z}[i]$.
3. Show that the map $f: \mathbb{C} \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
f(a+b i)=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

is a one-to-one homomorphism from the ring of complex numbers to the ring of $2 \times 2$ matrices with real entries.
4. Let $R$ be a commutative ring with identity and suppose that $I$ and $J$ are ideals of $R$. Show that $I \cap J$ is also an ideal of $R$. If $I$ and $J$ are prime ideals of $R$ will $I \cap J$ always be a prime ideal of $R$ ?
5. Let

$$
\left.I=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x] \mid a_{0} \text { is even }\right\} .\right]
$$

(a) Show that $I$ is an ideal of $\mathbb{Z}[x]$.
(b) Show that $\mathbb{Z}[x] / I$ is isomorphic to $\mathbb{Z}_{2}$.
(c) Prove that $I$ is a maximal ideal of $\mathbb{Z}[x]$.

6 . Let $R=\mathbb{Z}[x]$ and let $I$ be the set of polynomials of $\mathbb{Z}[x]$ whose terms have degree at least 2 , plus the constant 0 polynomial. So, members of $I$ are of the form $a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}$ for some $n \geq 2$ and integers $a_{i}$.
(a) Show that $I$ is an ideal of $R$. Hint: Show that $I=\left\langle x^{2}\right\rangle$.
(b) Show that the polynomials $3+5 x+x^{3}+x^{5}$ and $3+5 x-x^{4}$ are in the same coset of $I$ and give a general condition for when two polynomials $p(x)$ and $q(x)$ lie in the same coset of $I$.
(c) Show that $R / I$ consists of the elements $(a+b x)+I$ for $a, b \in \mathbb{Z}$.
(d) Describe the addition and multiplication operations on $R / I$.
(e) Is $R / I$ an integral domain? (this is the same as asking if $I$ is a prime ideal.)

Bonus:
(a) Compute the remainder when the polynomial $8 x^{5}-18 x^{4}+20 x^{3}-25 x^{2}+$ 20 is divided by $4 x^{2}-x-2$. Both polynomials are members of the polynomial ring $\mathbb{Q}[x]$.
(b) Compute the remainder when the polynomial $3 x^{4}+x^{3}+2 x^{2}+1$ is divided by $x^{2}+4 x+2$. Both polynomials are members of the polynomial ring $\mathbb{Z}_{5}[x]$.

## Supplementary problems from the textbook (not to be handed in)

- From Chapter 16, questions $1,2,4,12,16,18,23,26,30,33,36$
- From Chapter 17, questions $3,6,13,16,26,29$

