MATH 3GR3 Assignment #6 Due: Wednesday, December 6 by 11:59pm

- 1. Consider the ring \mathbb{Z}_{20} . List all of the ideals of this ring. List all of the units of this ring.
- 2. For each pair of rings, determine if they are isomorphic.
 - (a) \mathbb{R} and \mathbb{C} .
 - (b) \mathbb{Z} and $\mathbb{Z}[i]$.
- 3. Show that the map $f : \mathbb{C} \to M_{2 \times 2}(\mathbb{R})$ defined by

$$f(a+bi) = \left[\begin{array}{cc} a & b \\ -b & a \end{array}\right]$$

is a one-to-one homomorphism from the ring of complex numbers to the ring of 2×2 matrices with real entries.

- 4. Let R be a commutative ring with identity and suppose that I and J are ideals of R. Show that $I \cap J$ is also an ideal of R. If I and J are prime ideals of R will $I \cap J$ always be a prime ideal of R?
- 5. Let

$$I = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in \mathbb{Z}[x] \mid a_0 \text{ is even}\}.$$

- (a) Show that I is an ideal of $\mathbb{Z}[x]$.
- (b) Show that $\mathbb{Z}[x]/I$ is isomorphic to \mathbb{Z}_2 .
- (c) Prove that I is a maximal ideal of $\mathbb{Z}[x]$.
- 6. Let $R = \mathbb{Z}[x]$ and let I be the set of polynomials of $\mathbb{Z}[x]$ whose terms have degree at least 2, plus the constant 0 polynomial. So, members of I are of the form $a_2x^2 + a_3x^3 + \cdots + a_nx^n$ for some $n \ge 2$ and integers a_i .
 - (a) Show that I is an ideal of R. Hint: Show that $I = \langle x^2 \rangle$.
 - (b) Show that the polynomials $3 + 5x + x^3 + x^5$ and $3 + 5x x^4$ are in the same coset of I and give a general condition for when two polynomials p(x) and q(x) lie in the same coset of I.

- (c) Show that R/I consists of the elements (a + bx) + I for $a, b \in \mathbb{Z}$.
- (d) Describe the addition and multiplication operations on R/I.
- (e) Is R/I an integral domain? (this is the same as asking if I is a prime ideal.)

Bonus:

- (a) Compute the remainder when the polynomial $8x^5 18x^4 + 20x^3 25x^2 + 20$ is divided by $4x^2 x 2$. Both polynomials are members of the polynomial ring $\mathbb{Q}[x]$.
- (b) Compute the remainder when the polynomial $3x^4+x^3+2x^2+1$ is divided by $x^2 + 4x + 2$. Both polynomials are members of the polynomial ring $\mathbb{Z}_5[x]$.

Supplementary problems from the textbook (not to be handed in)

- From Chapter 16, questions 1, 2, 4, 12, 16, 18, 23, 26, 30, 33, 36
- From Chapter 17, questions 3, 6, 13, 16, 26, 29