MATH 3GR3 Assignment \#6 Solutions
 Due: Wednesday, December 6 by 11:59pm

1. Consider the ring \mathbb{Z}_{20}. List all of the ideals of this ring. List all of the units of this ring.
Solution: All of the ideals of the ring \mathbb{Z}_{n} are principal (Theorem 16.25 establishes this for \mathbb{Z}, the same holds for \mathbb{Z}_{n}), and so the ideals of \mathbb{Z}_{20} are of the form $\langle a\rangle$ with $a \in \mathbb{Z}_{20}$. These are also equal to the subgroups of the group \mathbb{Z}_{20}, and so the following is a complete list of the ideals:

$$
\mathbb{Z}_{20},\langle 2\rangle,\langle 4\rangle,\langle 5\rangle,\langle 10\rangle,\langle 0\rangle .
$$

The units are just the members of $U(20)=\{1,3,7,9,11,13,17,19\}$.
2. For each pair of rings, determine if they are isomorphic.
(a) \mathbb{R} and \mathbb{C}.
(b) \mathbb{Z} and $\mathbb{Z}[i]$.

Solution: For (a), the two rings are not isomorphic, since every element from \mathbb{C} has a square root, but not every element from \mathbb{R} does. So, if $\phi: \mathbb{C} \rightarrow \mathbb{R}$ is an isomorphism, there is some $c \in \mathbb{C}$ with $\phi(c)=-1$. If $d \in \mathbb{C}$ with $d d=c$, then $-1=\phi(c)=\phi(d d)=\phi(d) \phi(d)=r^{2}$, where $r=\phi(d)$. This shows that in \mathbb{R}, the element -1 has a square root. Since it doesn't, then there can't be any such isomorphism.
The argument for (b) is similar. We can see that the two rings are not isomorphic, since in $\mathbb{Z}[i]$, the element -1 has a square root, while in \mathbb{Z} it doesn't. Any isomorphism ϕ from $\mathbb{Z}[i]$ to \mathbb{Z} must map the identity element 1 to 1 and so must map -1 to -1 . So $-1=\phi(-1)=\phi\left(i^{2}\right)=$ $(\phi(i))^{2}$, which implies that -1 has a square root in \mathbb{Z}, which it doesn't.
3. Show that the map $f: \mathbb{C} \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
f(a+b i)=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

is a one-to-one homomorphism from the ring of complex numbers to the ring of 2×2 matrices with real entries.

Solution: If $f(a+b i)$ equals the Zero matrix, then $a=b=0$ and so the kernel of f is $\{0\}$. From this it follows that f is one-to-one. Using the rules for matrix addition and multiplication we can see that f is a homomorphism

$$
f((a+b i)+(c+d i))=f((a+c)+(b+d) i)=\left(\begin{array}{cc}
a+c & b+d \\
-(b+d) & a+c
\end{array}\right)
$$

while

$$
f(a+b i)+f(c+d i)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
a+c & b+d \\
-(b+d) & a+c
\end{array}\right) .
$$

Similarly,
$f((a+b i)(c+d i))=f((a c-b d)+(a d+b c) i)=\left(\begin{array}{cc}a c-b d & a d+b c \\ -(a d+b c) & a c-b d\end{array}\right)$
while

$$
f(a+b i) f(c+d i)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
a c-b d & a d+b c \\
-(a d+b c) & a c-b d
\end{array}\right) .
$$

4. Let R be a commutative ring with identity and suppose that I and J are ideals of R. Show that $I \cap J$ is also an ideal of R. If I and J are prime ideals of R will $I \cap J$ always be a prime ideal of R ?
Solution: We need to show that $I \cap J$ is non-empty and if $a, b \in I \cap J$ and $r \in R$ then $a-b \in I \cap J$ and $r a$ and ar $\in I \cap J$. Clearly $I \cap J$ is non-empty since 0 is a member of it. Since $a, b \in I$ and are in J then $a-b, r a$, and $a r$ are in I and in J and so belong to $I \cap J$.

If I and J are prime ideals of R, then $I \cap J$ need not be prime. For example, we know that the ideals $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are prime ideals of \mathbb{Z}, but their intersection, $6 \mathbb{Z}$, is not a prime ideal (since $6=(2)(3) \in 6 \mathbb{Z}$ but 2 and 3 are not).
5. Let

$$
\left.I=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x] \mid a_{0} \text { is even }\right\} .\right]
$$

(a) Show that I is an ideal of $\mathbb{Z}[x]$.
(b) Show that $\mathbb{Z}[x] / I$ is isomorphic to \mathbb{Z}_{2}.
(c) Prove that I is a maximal ideal of $\mathbb{Z}[x]$.

Solution:

(a) Since $2 \in I, I$ is nonempty. If $p(x), q(x) \in I$ and $r(x) \in R$, then p_{0} and q_{0} are even, so $p_{0}+q_{0}$ and $r_{0} p_{0}$ are even, which means $p(x)+q(x) \in I$ and $r(x) p(x) \in I$. Thus, by the proposition from question 3 and the fact that multiplication in $\mathbb{Z}[x]$ is commutative, I is an ideal.
(b) Define $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{2}$ by $\phi(p(x))=p_{0} \bmod 2$. Since ϕ is a composition of the evaluation homomorphism $p(x) \mapsto p(0)$ and the quotient homomorphism $a \mapsto a \bmod 2, \phi$ is also a homomorphism. Clearly, ϕ is surjective $(\phi(0)=0$ and $\phi(1)=1)$ and $\phi(p(x))=0$ if and only if p_{0} is even. Thus, by the first isomorphism theorem,

$$
\mathbb{Z}_{2}=\phi(\mathbb{Z}[x]) \cong \mathbb{Z}[x] / \operatorname{ker}(\phi)=\mathbb{Z}[x] / I
$$

(c) By Theorem 16.35, I is maximal if and only if $\mathbb{Z}[x] / I$ is a field. But $\mathbb{Z}[x] / I \cong \mathbb{Z}_{2}$ is a field, and hence I is maximal.
6. Let $R=\mathbb{Z}[x]$ and let I be the set of polynomials of $\mathbb{Z}[x]$ whose terms have degree at least 2 , plus the constant 0 polynomial. So, members of I are of the form $a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}$ for some $n \geq 2$ and integers a_{i}.
(a) Show that I is an ideal of R. Hint: Show that $I=\left\langle x^{2}\right\rangle$.
(b) Show that the polynomials $3+5 x+x^{3}+x^{5}$ and $3+5 x-x^{4}$ are in the same coset of I and give a general condition for when two polynomials $p(x)$ and $q(x)$ lie in the same coset of I.
(c) Show that R / I consists of the elements $(a+b x)+I$ for $a, b \in \mathbb{Z}$.
(d) Describe the addition and multiplication operations on R / I.
(e) Is R / I an integral domain? (this is the same as asking if I is a prime ideal.)

Solution:

(a) We could prove that I is an ideal directly. Alternatively, notice that $f(x) \in I$ if and only if $x^{2} \mid f(x)$, so $I=x^{2} \mathbb{Z}[x]=\left\langle x^{2}\right\rangle$. This is clearly an ideal, since it is the ideal generated by x^{2}.
(b) By definition, two elements are in the same coset if their difference is in I. We have

$$
\left(3+5 x+x^{3}+x^{5}\right)-\left(3+5 x-x^{4}\right)=x^{3}+x^{4}+x^{5} \in I
$$

so these two polynomials are in the same coset. In general, let $p(x)=a+b x+x^{2} r(x)$ and $q(x)=c+d x+x^{2} s(x)$. Then

$$
p(x)-q(x)=(a-c)+(b-d) x+x^{2}(r(x)-s(x))
$$

so p and q are in the same coset if and only if $a=c$ and $b=d$.
(c) From part (b), $p(x)$ and $q(x)$ are in the same coset if and only if their constant and linear terms are equal. Thus, each coset contains precisely one element of the form $a+b x$ with $a, b \in \mathbb{Z}$, and so we can consider R / I as the set of such polynomials.
(d) Let $a+b x, c+d x \in R / I$. Then

$$
(a+b x)+(c+d x)=(a+c)+(b+d) x
$$

and

$$
(a+b x)(c+d x)=a c+(a d+b c) x+b d x^{2}=a c+(a d+b c) x
$$

(e) No, R / I is not an integral domain, since $x+I \neq 0+I$, but $(x+I) \cdot(x+I)=x^{2}+I=0+I$.

Bonus:
(a) Compute the remainder when the polynomial $8 x^{5}-18 x^{4}+20 x^{3}-25 x^{2}+$ 20 is divided by $4 x^{2}-x-2$. Both polynomials are members of the polynomial ring $\mathbb{Q}[x]$.
Solution: $8 x^{5}-18 x^{4}+20 x^{3}-25 x^{2}+20$ is equal to
$\left(2 x^{3}-4 x^{2}+5 x-7\right)\left(4 x^{2}-x-2\right)+(3 x+6)$, so the remainder is $3 x+6$.
(b) Compute the remainder when the polynomial $3 x^{4}+x^{3}+2 x^{2}+1$ is divided by $x^{2}+4 x+2$. Both polynomials are members of the polynomial ring $\mathbb{Z}_{5}[x]$.
Solution: $3 x^{4}+x^{3}+2 x^{2}+1$ is equal to $\left(3 x^{3}-x\right)\left(x^{2}+4 x+2\right)+(2 x+1)$, so the remained is $2 x+1$.

