MATH 3GR3 Midterm \#1 Sample Questions Solutions

1. (a) Give the definition of a group.

Solution: Consult the textbook.
(b) Let $\mathbb{R}^{+}=\{r \in \mathbb{R}: r>0\}$, the set of all positive real numbers, and for $a, b \in \mathbb{R}^{+}$, define $a \circ b=\sqrt{a b}$. Is \mathbb{R}^{+}with the operation \circ a group? Justify your answer.
Solution: NO. There is no identity element for this operation. To see this, suppose that $r \in \mathbb{R}^{+}$has the property that $r \circ b=b$ for all $b \in \mathbb{R}^{+}$. Then $\sqrt{r b}=b$ and so $r b=b^{2}$. But then $r=b$ for all $b \in \mathbb{R}^{+}$, which is impossible.
In addition, the operation \circ is not associative: for instance, $1 \circ$ $(2 \circ 3)=\sqrt{\sqrt{6}}$, while $(1 \circ 2) \circ 3=\sqrt{(\sqrt{2}) 3}$.
2. Here is part of an operation table for an operation on a five element set G whose elements are u, v, w, x, y.

\cdot	u	v	w	x	y
u	u	v	w		
v					
w		y	x	v	
x	x			y	
y	y	x			u

Explain why this table can't be filled in so that the operation it defines satisfies the axioms for a group.
Solution: We know that every row and column of the Cayley table of a group describes a permutation of the group. So, the third row of the table must be a permutation of $\{u, v, w, x, y\}$. Since the elements y, x, and v already appear in this row, it follows that $w u=u$ or $w y=u$. In the former case, the element u appears twice in the first column of the table, and so this case is not possible. For the latter case, we conclude that u appears twice in the last column, which is also not possible, since u already appears in this column. Since both cases are ruled out, there is no way to complete this table to produce the Cayley table of a group.
3. Produce the Cayley table for $U(12)$, the group of units in \mathbb{Z}_{12}.

Solution: $U(12)$ is the group that consists of the elements $\{1,5,7,11\}$ with operation integer multiplication modulo 12. Thus the Cayley table for this group is:

\cdot	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

4. Consider the following element of $S_{7}: \mu=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 6 & 7 & 2 & 4 & 3\end{array}\right)$.
(a) Write μ as a product of disjoint cycles.

Solution: $\mu=(152)(3647)$
(b) What is the order of μ ?

Solution: The order of μ is 12 (12 is the least common multiple of 3 and 4 , the orders of the two cycles from part a)).
(c) Determine if μ is an even or an odd permutation.

Solution: μ is odd since it is the product of a 3 -cycle (which is even) and a 4-cycle (which is odd).
5. Let n be a natural number with $n>1$ and suppose that G is a cyclic group of order n. Show that if the natural number m divides into n, then G has a subgroup of order m.
Solution: Suppose that $G=\langle a\rangle$ for some element $a \in G$. Let m be a natural number that divides into n and let $k=n / m$. Let $g=a^{k} \in G$. Then the order of g is m, since $g^{m}=\left(a^{(n / m)}\right)^{m}=a^{n}=e$ and if $r<m$ then $g^{r}=\left(a^{(n / m)}\right)^{r}=a^{(n r) / m} \neq e$, since a has order n and $(n r) / m<n$. [Alternatively, we know that the order of a^{k} is $n / \operatorname{gcd}(n, k)=m$.]
It follows that the subgroup $H=\langle g\rangle$ has order m.

