
MATH 4LT3/6LT3 Assignment #1 Solutions
Due: Friday, September 19, by 11:59pm.

Upload your solutions to the Avenue to Learn course website.
Detailed instructions will be provided on the course website.

Please read the following statement on collaboration on home-
work:

Limited collaboration in planning and thinking through solutions to home-
work problems is allowed, but no collaboration is allowed in writing up so-
lutions. It is permissible to discuss general aspects of the problem sets with
other students in the class, but each person should hand in his/her own copy
of the solutions. By general aspects I mean you can say things like, “Did
you use a diagonalization argument for question 1?” Anything more detailed
than this is not acceptable.

Violation of these rules may be grounds for giving no credit for a home-
work paper and also for serious disciplinary action.

Important note: You may not use any generative Artificial Intelligence
system, such as ChatGPT, to assist you in preparing your solutions to the
homework problems.

In presenting your solutions, I will be looking for well written, comprehen-
sible answers. Please don’t shy away from using complete English sentences
to explain your work, and please be careful how you use quantifiers. Ev-
ery statement you write down should assert something, and should be used
somehow to help solve the problem at hand.

NOTE: You may find it useful to employ the Finite Automata simulator
that is linked to from the course homepage (https://www.jflap.org) when
working on some of the questions in this assignment. The link will direct you
to a simulator that is available as a downloadable java application. You will
need to have the appropriate java installation on your computer in order for
the simulator to function properly.

If you use the application for solving any of the homework questions
please consider including saved copies of the automata that you construct as
separate uploads as part of your Avenue To Learn submission, or submitting
print outs of their state diagrams.
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1. For each of the following DFA’s, provide an informal description of the
languages that they accept.
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Solution:

a) The language accepted by this DFA is the set of words of the
form (ab)na for some number n ≥ 0. This is the same as the set
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of words of the form a(ba)n, for n ≥ 0 and can be described by
the regular expressions (((a · b)∗) · a) or (a · ((b · a)∗)).

b) The language accepted by this DFA is the set of words of the form
anb for some number n ≥ 0 and can be described by the reg. exp.
((a∗) · b).

c) A word w is accepted by this DFA iff the number of a’s in w
is equal to the number of b’s in w and no initial segment of w
contains more b’s than a’s and never more than 2 a’s than b’s.
The following reg. exp. describes this language: ((ab)∗a(ab)∗b)∗.

d) The language accepted by this DFA is the set of words over the
strings ba and ab, i.e., words from {ab, ba}∗.

2. Please submit complete solutions to the following exercises from Chen.

(a) Exercise 1.9.1

Solution: ba, aba, bba, baa, bab.

(b) Exercise 1.9.8

Solution: Let B be a language over the alphabet Σ. Let

MB = (Q,Σ, s, T, δ)

be the DA with Q = Σ∗, s = ϵ, T = B, and δ : Q×Σ → Q defined
by δ(σ, a) = σ · a, for any string σ ∈ Q = Σ∗, and a ∈ Σ. We
claim that L(MB) = B. This follows from

Claim: For σ, β ∈ Σ∗, [β, σ] ⊢n
MB

[β · σ, ϵ], where n = |σ|.

Proof. We prove this by induction on |σ|. For |σ| = 0, we have
that σ = ϵ. It is clear that the claim holds in this case. Suppose
that it holds for all strings of length n for some n ≥ 0 and let
|σ| = n + 1. Then σ = a · α for some α ∈ Σ∗ and a ∈ Σ, with
|α| = n.

By induction,

[β · a, α] ⊢n
MB

[β · a · α, ϵ] = [β · σ, ϵ].
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Since δ(β, a) = β · a, it follows that

[β, σ] = [β, a · α] ⊢MB
[β · a, α]

and so [β, σ] ⊢n+1
MB

[β · α, ϵ], as claimed.

Using the definition of acceptance, we have that a string σ is
accepted by MB if and only if [ϵ, σ] ⊢∗

MB
[q, ϵ] for some state q ∈

T = B. But by the claim, q must be equal to σ and so σ is
accepted by MB if and only if σ ∈ B. Thus L(MB) = B.

(c) Exercise 1.9.13, #2, 4, 7, 9, 14

Solution:

#2

#4 The condition is equivalent to |x| being congruent to 0, 2, 3,
or 4 modulo 6.

#7 First consider the complement of this language. This is the
set of strings that has abb as a substring. Then the comple-
mentation construction from Section 1.2 can be used to build
the required DFA.
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#9 Again, it might be useful to first consider the complement
of this language. This is the set of strings that contain ab
as a substring, but not ba, along with the set of strings that
contain ba as a substring, but not ab. In the first case, these
are just the strings anbm for some n, m ≥ 1. In the latter
case, these are the strings bnam for some n, m ≥ 1. Both of
these sets of strings can be recognized by simple DFAs. The
union of these sets of strings can be recognized by a slightly
more complicated DFA.

#14 This uses the union construction found in the proof of Theo-
rem 1.2.4.

(d) Exercise 1.9.15, #2, 5, 7

Solution:
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#2

#5

#7

(e) Exercise 1.9.20

Solution: This DFA can be obtained by applying the product
construction to the two 2-states DFAs that accept those strings
that have an even number of occurrences of a and those strings
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that have an even number of occurrences of b respectively.

(f) Exercise 1.9.23

Solution: We should first consider the trivial case where B = ∅.
Then P = ∅ too and so there is nothing to prove. Now suppose
that B is nonempty and let M = (Q,Σ, q0, T, δ) be a DFA with
L(M) = B. Note that since B is nonempty then ϵ ∈ P . To show
that P is regular, we can modify M by enlarging the set of accept
states T of M to T ′ to produce a DFA M ′ with L(M ′) = P . We
can regard the diagram for M as a directed graph whose edges are
labelled by symbols from Σ. A path from state q to state r is a
sequence of edges that connect q to r. If we define T ′ to be the set
of states q from Q for which there is a path to a state r ∈ T then it
can be shown that the language of the DFA M ′ = (Q,Σ, q0, T

′, δ)
is P .

More precisely, define

T ′ = {q ∈ Q | [q, w] ⊢∗
M [r, ϵ] for some r ∈ T and w ∈ Σ∗}.

So T ′ consists of those states for which there is a path to some
accept state of M . We note that since B is nonempty then for
some (any) string w ∈ B, [s, w] ⊢∗

M [t, ϵ] for some t ∈ T and so
s ∈ T ′.

We claim that for all strings x, x ∈ P if and only if M ′ accepts x.
If x ∈ P then xv ∈ B = L(M) for some string v. This means that
[s, xv] ⊢∗

M [t, ϵ] for some t ∈ T . Let q ∈ Q be the unique state
with

[s, xv] ⊢∗
M [q, v] ⊢∗

M [t, ϵ].

Then by definition, q ∈ T ′ and it can be seen that [s, x] ⊢∗
M [q, ϵ]

SinceM andM ′ have the same start state and transition function,
we also have [s, x] ⊢∗

M ′ [q, ϵ], showing that x ∈ L(M ′).

Conversely, suppose that x ∈ L(M ′). Then for some q ∈ T ′,
[s, x] ⊢∗

M ′ [q, ϵ]. As noted earlier, this implies that [s, x] ⊢∗
M [q, ϵ]

as well. Since q ∈ T ′ then there is some v ∈ Σ∗ and t ∈ T with
[q, v] ⊢∗

M [t, ϵ]. It follows that

[s, xv] ⊢∗
M [q, v] ⊢∗

M [t, ϵ],
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showing that xv ∈ L(M) = B. But this also shows that x ∈ P ,
as claimed.

Note that in the above, we claimed without proof that for any
strings x and v and states q and r, [q, x] ⊢∗

M [r, ϵ] if and only if
[q, xv] ⊢∗

M [r, v]. This can be proved by induction on |x|, with the
case |x| = ϵ being trivial. We leave the details of the rest of the
proof to the reader.

3. Consider the following NFA:

q0start q1 q2

q3

a b

b

a
a

(a) Determine which of the following strings are accepted by this NFA:
ϵ, ab, abab, aba, abaa.

Solution: Part (a): All words in the list, except for abaa are accepted
by the NFA.

Note that part (b) of this question will appear on Assignment #2.

The following (multi-part) question is for students enrolled in MATH
6LT3. Students in MATH 4LT3 can treat it as a bonus question.

Let M = (Q,Σ, q0, F, δ) be a DFA.

1. For σ, τ ∈ Σ∗, define σ ≡ τ if for all ω ∈ Σ∗, σω ∈ L(M) if and only if
τω ∈ L(M). Show that ≡ is an equivalence relation on Σ∗.

Solution: ≡ is clearly reflexive and symmetric. For transitivity, suppose
that σ ≡ τ ≡ γ and let w ∈ Σ∗. Then σw ∈ L(M) if and only if
τw ∈ L(M) if and only if γw ∈ L(M). This establishes that σ ≡ γ and
hence the transitivity of ≡.
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2. For σ, τ ∈ Σ∗, define σ ∼ τ if δ(q0, σ) = δ(q0, τ). Show that ∼ is an
equivalence relation on Σ∗ and that ∼ is a refinement of ≡. Argue that
the number of equivalence classes of ≡ is at most |Q|, the number of
states of M . Note that we are regarding δ as an extended transition
function.

Solution: ∼ is an equivalence relation since it is the kernel of some
function, namely f(x) = δ(q0, x). In general, for any function f(x), the
relation {(a, b) | f(a) = f(b)} is always an equivalence relation on the
domain of f .

Suppose that σ ∼ τ and let w ∈ Σ∗ with σw ∈ L(M). This means that
δ(q0, σw) = q for some accepting state q of M . But then

δ(q0, τw) = δ(δ(q0, τ), w) = δ(δ(q0, σ), w) = δ(q0, σw) = q,

establishing that τw ∈ L(M) too. From this it follows that σ ≡ τ , as
required. Since the number of ∼ classes is bounded by the number of
states of M and since the number of ≡ classes is at most the number
of ∼ classes, it follows that the number of ≡ classes is bounded by |Q|.

3. For σ ∈ Σ∗, let [σ] denote the equivalence class of strings that are
≡-related to σ. Define M ′ to be the DFA (Q′,Σ, δ′, [ϵ], F ′), where

(a) Q′ = {[σ] | σ ∈ Σ∗},
(b) F ′ = {[σ] | σ ∈ L(M)}, and
(c) For σ ∈ Σ∗ and a ∈ Σ, δ′([σ], a) = [σ · a].

Show that δ′ is a well-defined function. Then show that L(M ′) = L(M).

Solution: To show that δ′ is well-defined, we need to show that if σ,
τ ∈ Σ∗ with σ ≡ τ then for every a ∈ Σ, [σ · a] = [τ · a], i.e., that
σ · a ≡ τ · a. This follows from the definition, since for any w ∈ Σ∗,
if (σ · a) · w ∈ L(M) then σ · w′ ∈ L(M), where w′ = a · w. But
then, since σ ≡ τ , we have τ ·w′ ∈ L(M) as well, which is the same as
(τ · a) · w ∈ L(M). From this it follows that σ · a ≡ τ · a, as required.
For the second part, first note that for all w ∈ Σ∗, δ′([ϵ], [w]) = [w].
This can be proved by induction on |w|. From this we conclude that
w ∈ L(M ′) if and only if [w] ∈ F ′, i.e., w ≡ σ for some σ ∈ L(M).
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But then we have w ∈ L(M) as well. Conversely, if w ∈ L(M), then
[w] ∈ F ′. Since δ′([ϵ], w) = [w] it follows that w ∈ L(M ′).

4. Explain why, amongst all of the DFA’s that accept the language L(M),
M ′ has the fewest number of states.

Solution: By construction, the number of states of M ′ is not dependent
on M , but rather on the language L = L(M). Also, as shown in part
2), the number of states of M ′ is at most the number of states of any
DFA M that accepts L. It follows that the number of states of M ′ is
the smallest amongst those DFA’s that accept L.

5. For the following DFA M , construct the DFA M ′ using the above def-
inition.

q0start q1

q2

0

1

0

1
0

1

Solution: We first need to construct the ≡ classes for L(M). Note that
L(M) is the set of all words over {0, 1} that do not end in 1. From this
it can be seen that there are exactly two ≡ classes: [ϵ] = {w ∈ {0, 1}∗ |
w = ϵ or w ends in 0} and [1] = {w ∈ {0, 1}∗ | w ends in 1}.
So M ′ has two states, [ϵ] and [1], with [ϵ] the initial state and the only
accepting state. The transition function for M ′ maps ([ϵ], 0) to [ϵ],
([ϵ], 1) to [1], ([1], 0) to [ϵ], and ([1], 1) to [1].
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