

Upload your solutions to the Avenue to Learn course website. Detailed instructions will be provided on the course website.

- 1. In the text, the Kuratowski definition of an ordered pair is given along with a proof that it satisfies the ordered pair properties (OP1) and (OP2).
 - (a) Show that the following construction also satisfies these properties, where $0 = \emptyset$, and $1 = \{\emptyset\}$:

$$(x, y) = \{\{x, 0\}, \{y, 1\}\}.$$

(b) Determine if the following construction satisfies the ordered pair properties:

$$(x,y) = \{x, \{x,y\}\}.$$

- 2. Recall the definition of a cardinal assignment from the lectures. Given such an assignment (weak or strong), show that if κ , λ , and μ are cardinals, then $(\kappa \cdot \lambda)^{\mu} =_c \kappa^{\mu} \cdot \lambda^{\mu}$ and $(\kappa^{\lambda})^{\mu} =_c \kappa^{\lambda \mu}$.
- 3. With \mathfrak{c} the cardinality of the continuum (technically, $|\mathcal{P}(\mathbb{N})|$), show that $\mathfrak{c}^{\mathfrak{c}} =_{c} 2^{\mathfrak{c}}$. You might consider using the results from the previous problem, and also first establishing that $\aleph_0 \cdot \mathfrak{c} =_{c} \mathfrak{c}$.
- 4. For $k \in \mathbb{N}$, let the function $f_k : \mathbb{N} \to \mathbb{N}$ be defined by

where k appears n-times. Show that there exists a function f with domain $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} such that $f(k, n) = f_k(n)$. You should consider using the recursion with parameters theorem for this. Next, show that the function

where *n* appears *n*-times, is a member of the set $(\mathbb{N} \to \mathbb{N})$.

- 5. Now that we have constructed the natural numbers, i.e., the structured set $(\mathbb{N}, +, \times, \leq, 0, 1)$, show that the integers $(\mathbb{Z}, +, \times, \leq, 0, 1)$ can be faithfully represented as a structured set within our set theoretic universe \mathcal{W} . You will need to describe a construction of the integers, along with the operations of +, \times , the relation \leq , and the elements 0 and 1 from the natural numbers, that can be carried out using, indirectly, the Axioms.
- 6. Let (P, \leq) and (Q, \leq) be linearly ordered sets.
 - (a) Define their sum to be the order over the disjoint union of P and Q such that elements of P are less than all of the elements of Q, and elements within P or Q are ordered according to ≤ or ≤ respectively.

Show that the sum of (P, \leq) and (Q, \leq) is a linear order. If they are both well orders, is their sum?

(b) Define the product of these linearly ordered sets to be the order \sqsubseteq on the set $P \times Q$ such that $(p,q) \sqsubseteq (p',q')$ if and only if $(q \prec q')$ or $(q = q' \text{ and } p \leq p')$. Show that the product of $(P \leq)$ and $(Q \prec)$ is a linear order. If

Show that the product of (P, \leq) and (Q, \preceq) is a linear order. If they are both well orders, is their product?