MATH 4LT/6LT3 Assignment #2 Solutions
Due: Friday, 3 October by 11:59pm.

1. Consider the following NFA:

()
start —

a

Convert this NFA into an equivalent DFA using the procedure provided
in the proof of Theorem 1.3.20. Note: You may disregard any states
in the construction that cannot be reached from the initial state. So
your solution should have far fewer than 16 states.

Solution: The following is a diagram for the DFA produced from this
NFA using the construction in the proof of Theorem 1.3.20. Note that
only 5 of the 16 states are included, since the remaining ones do not play
a role in the processing of a string. The 5 states are labelled according
to the subset of {q0, q1,¢2, ¢3} they correspond to. The label es is for
the empty set.

2. Show that each of the following languages is not regular:
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(a)

Ly = {0"1"2" | n > 0}.

Solution: It suffices to find an infinite set of strings that is pairwise
separable with respect to Ly. The following set works (but there
are many others):

Zy={0" | n > 0}.

To see this, let 0 < i < j and let w = 1?2, Then 0w € Ly but
07w is not.

Ly = {www | w € {a,b}*}.

Solution: Let
Zy ={a"b| n>0}.

7 is pairwise separable with respect to L since if 0 < i < j, we
have, with v = a’ba’b, a’bv € L; but a’bv is not. Since i # j, then
there is no way to break a’v into three identical substrings, since
such a substring must end in b and contain exactly one b.

Ly = {a™b"™ | m # n}.

Solution: There are a couple of ways to solve this. One is to use
some of the closure properties of regular languages and the fact
that the language L = {a™" | n > 0} is not regular (shown
in class). Note that L = L(a*b*) N Ly. Since the collection
of regular languages over {a,b} is closed under intersection and
complementation, then if L, is regular, so is L, and hence so is
L(a*b*) N Ly = L, a contradiction.

Alternatively, it can be seen that the set {a' | ¢ > 0} is pairwise
separable with respect to Ls.

Ly ={z =y+z | |z[=yl+|z[forz,y, z€{1}"}. Lsis a
language over the alphabet {1,=,+}.

Solution: Let
Zy={1"=1] n>1}.

Z3 is pairwise separable with respect to L3 since if 2 < i < 7, we
have, with v = 1" 41, 1* = v € L3 but 1V = v is not.



3. Let ¥ be an alphabet and w € ¥*. If w = ajay...a; for some k& > 0
and a; € X, define the reverse of w to be the string w” = agap_1 ... asa;.
Show that if L is a regular language, then so is L" = {w" | w € L}.

Solution: One way to prove this is to take a DFA M that accepts L
and modify it so that the resulting NFA M" accepts L". To modify M,
“reverse” its transitions, i.e., if 0(¢,a) = ¢’ is a transition of M, then
include ¢ in the set 6"(¢’, a), where 0" is the transition function of M.
Further, declare the initial state of M to be the only final state of M"
and add a new initial state R to M". For each final state ¢ of M, add
q to the transition 0" (R, €).

If a string w is accepted by M, then after starting in its initial state,
M will end up in one of its accepting states, q. By reversing this path
of transitions in M, it can be seen that it will be an accepting path for
w" in the NFA M7 after first making an € transition from the state R
to the state q.

On the other hand, if M" accepts some word w, then the path of
transitions from the initial state of M" to its only accepting state must
first pass through one of the accepting states q of M, and then follow a
chain of 0" transitions to end up at the initial state of M. By reversing
this chain of transitions, we obtain one that starts at the beginning of
w”, in the initial state of M, and ends up in the state ¢, one of the final
states of M. Thus, w" is accepted by M. This establishes that for any
word w, M accepts w if and only if M" accepts w", showing that L" is
also regular.

4. Exercise 1.9.7.

Solution: Let L be a finite language over the alphabet ¥. We will prove
by induction on the size of L that it is regular. If |[L| = 0 then L is
the empty language, and it is easy to come up with a DFA M with
L(M) = (any DFA that has no accepting states will work).

Next, suppose that |L| = 1, say L = {w}, where w = ajasy---a; for
some k > 0 and a; € . We will show by induction on k that L is
regular. When k = 0, w = € and it is not hard to produce a DFA that
only accepts this string (a 2 state DFA can be found with this property).
Similarly, if £ = 1, then there is a 3 state DFA that only accepts the



string a;. Using that the concatenation of two regular languages is
regular and that both of the languages {ajas - --ax} (by the induction
hypothesis) and {ay,1} are regular, it follows that {ajas - - - agaxr1} is
as well.

Now, suppose that n > 1 and that the claim holds for all languages of
size at most n. Assume that |L| = n + 1 and let w be any member of
L. Let Lo = L\ {w} and let L; = {w}. By induction, Ly and L; are

regular and so their union, L, is also regular.

An alternate solution of this is to first show that for each string w =
ajas . .. ag, there is a k+ 1-state NFA N,, with L(N,,) = {w}. With the
set of states of N,, equal to {0,1,...,k}, 0 will be the start state, and k
will be the only accept state. For each i < k, there is one transition from
state i to i + 1, labelled by the symbol a;q1. If L = {wy,ws, ..., w,},
then we can set NV to be the NFA that is the union of the NFAs N,
through to IV, . Here, we assume that the set of states of these NFAs
are disjoint (by suitably renaming them), the set of starts states consists
of the start states of each of the NFAs and the set of accept states
consists of the set of accept states of the NFAs. Then L(N) = L.

. Exercise 1.9.21.

Solution: For B a subset of N, let Lp = {a" | n € B}. Let S be
ultimately periodic, with n and p given as in the definition. Let Sy =
SN{keN|k<n}and S; =S5\ So. So S is a finite set containing
all numbers from S that are less than n and S; contains the other
members of S. Since Sy is finite, then so is Lg, and hence is regular
(by the previous homework question). Since Lg = Lg, U Lg, then to
show that Lg is regular, it is enough to show that Lg, is.

For each 0 < j < p, let P; = {m € Sy | m = j mod p}. Clearly
Sy is the finite union of all of the nonempty P;. So, it suffices to
show that each nonempty Lp, is regular. If P; is nonempty, let m; be
the smallest member of P;. Then by the ultimately periodic property,
P; = {m; +kp| ke N}. Then Lp, = {a"}-{a}*. Since both {a™}
and {a}* are regular, then so is Lp,, as required. Thus Lg, and Lg are
regular.

For the converse, Let M = (Q,%,s,T,0) be a DFA with ¥ = {a}
and let L = L(M). Let S = {n € N | a" € L}. Define the infinite
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sequence of members of @), ¢,, inductively by: ¢y = s and for n > 0,
Gnt1 = 0(qn,a). It can be seen that for any n > 0, after processing the
string a™ the DFA M will be in state ¢, € Q.

Since () is finite there will be a smallest n € N such that for some p > 0,
dn = Gn+p- Choose p to be the smallest positive integer with this prop-
erty. If one considers the transition diagram of M as a directed graph,
then there will be a path of length n going from s to ¢,, traversing the
distinct states ¢; up to ¢,, followed by a loop of length p, traversing
the states g, up to gn4,—1 and then back to g,. It follows that for any
m 2 n, Gm = Gmip-

Let So = {k € N| k<nanda*€ L} and let S; = {k € N |
a* € L and k > n}. Clearly S = Sy U S;. Furthermore, if m € S,
then @™ € L, which implies that g, € T". Since ¢+, = ¢, in this case,
it follows that a,,;, € L and hence that m + p € S;. This establishes
that the set S is ultimately periodic.

The following questions are for students enrolled in MATH 6LT3. Stu-
dents in MATH 4LT3 can treat them as bonus questions.

B1 For L; and L, languages over the alphabet >, define L; ! Ly to be the
language

{w € T | w = arbiashs . .. apby, for some k >0, ajas...ax € Ly

and blbg Ce bk € Lg}
Prove that if L; and L, are regular then so is L1 Lo.

Solution: We first prove a special case of this, when one of L; or Lo
is X*. Once we have shown that L, ! ¥* and ¥* Ly are regular, then
since L1 Ly = L1 1X*NY* ) Ly it will follow that Lq? Ls is also regular.

The argument for showing that ¥X* Lo is regular is similar to that for
showing that L X" is, and so we will only deal with the latter claim.
(In fact, "2 Lo = (L5 X*)" and so we can use the result from question
#3 to conclude that it is regular, if Ly is.)

Suppose that L; is regular and let M = (Q,%,s,T,§) be a DFA with
Ly = L(M). We describe how to construct a DFA M’ from M with
L(M’) = Ly ¥*. The idea is that when M’ is processing an input

5



B2

string, it ignores every other symbol. To accomplish this, M’ will have
a copy of each state of M and its transition function will rely on M’s
when processing the odd-numbered symbols of an input string. Define

M’ = (Q U QI7 27 5/7 Tl’ 5/)7

where Q' = {¢' | ¢ € Q} is a disjoint copy of Q, T" ={t' € Q' |t € T}
and ¢’ is defined by: §'(q,a) = ¢ and 0'(¢,a) = §(q,a) for any q € Q
and a € X.

We claim that for w = a1b1asbs . . . aib, for some k > 0 and a;, b; € X,
that w € L(M’) if and only if ayas...ar € L(M). To show this we
prove by induction on k, that if after processing ajas...ar, M is in
state ¢, then after processing w, M’ will be in state ¢/, and conversely.
The claim follows from this since the set of accept states of M’ is T".

When k = 0, this property holds since the initial state of M’ is the
copy of M’s initial state. Suppose that the property holds for k& and
consider the string v = a1b1asbs . . . apbrar1bp11. Let ¢ be the state of
M after processing ajas . ..ag. Then by induction the state of M’ after
processing aibiasbs . . . aiby is ¢. Then the state of M after processing
aias . .. agagy, will be 0(q, axy1), while the state of M’ after processing
arbiasghs . . . agbrag,1bg 1 will be §'(0'(¢', axy1), bgy1)). By the definition
of ¢, this state will be §(q, axs1)’, as required. The converse can be
proved similarly.

Exercise 1.9.40.
Solution: A statement and proof of the Pumping Lemma can found

in most standard references for the foundations of computing. For
instance, a proof can be found in Sipser’s book on this subject.



