MATH 4LT3/6LT3 Assignment #2 Solutions Due: Friday, October 6, 11:59pm

Upload your solutions to the Avenue to Learn course website. Detailed instructions will be provided on the course website.

- 1. In the text, the Kuratowski definition of an ordered pair is given along with a proof that it satisfies the ordered pair properties (OP1) and (OP2).
 - (a) Show that the following construction also satisfies these properties, where $0 = \emptyset$, and $1 = \{\emptyset\}$:

$$(x,y) = \{\{x,0\}, \{y,1\}\}.$$

Solution: (OP1): Suppose that (x, y) = (x', y'). Then $\{\{x, 0\}, \{y, 1\}\} = \{x', 0\}, \{y', 1\}\}$. Either $\{x, 0\} = \{x', 0\}$ and $\{y, 1\} = \{y', 1\}$ or $\{x, 0\} = \{y', 1\}$ and $\{y, 1\} = \{x', 0\}$. In the former case, either x = x' or x = 0 and x' = x. In any case we conclude that x = x'. Similarly, from $\{y, 1\} = \{y', 1\}$ we conclude that y = y', as desired. In the latter case, from $\{x, 0\} = \{y', 1\}$ we get that since $0 \neq 1$, then x = 1 (since $1 \in \{x, 0\}$) and y' = 0 (since $0 \in \{y', 1\}$), and from $\{y, 1\} = \{x', 0\}$ we get that y = 0 and x' = 1. Putting this together, we conclude that x = 1 = x' and y = 0 = y'. (OP2): We see that for sets x and y, the ordered pair (x, y) is a subset of the set $\mathcal{P}(\{x, y, 0, 1\})$ and so is a member of $\mathcal{P}(\mathcal{P}(\{x, y, 0, 1\}))$. If $x \in A$ and $y \in B$, then (x, y) is a subset of $\mathcal{P}(A \cup B \cup \{0, 1\})$.

$$\{z \in C \mid z = \{\{x, 0\}, \{y, 1\}\}\$$
 for some $x \in A$ and $y \in B\}$,

where $C = \mathcal{P}(\mathcal{P}(A \cup B \cup \{0, 1\}))$. It follows that $A \times B$ is a set, by the Separation Axiom.

(b) Determine if the following construction satisfies the ordered pair properties:

$$(x, y) = \{x, \{x, y\}\}\$$

Solution: Without additional axioms, it can't be deduced that (x, y) satisfies (OP1). Without the Axiom of Foundation (we'll see it later), we could have distinct sets x and y with $x = \{y\}$ and $y = \{x\}$. For such sets, it can be seen that (x, x) = (y, y).

2. Recall the definition of a cardinal assignment from the lectures. Given such an assignment (weak or strong), show that if κ , λ , and μ are cardinals, then $(\kappa \cdot \lambda)^{\mu} =_c \kappa^{\mu} \cdot \lambda^{\mu}$ and $(\kappa^{\lambda})^{\mu} =_c \kappa^{\lambda \mu}$.

Solution: Let K, L, and M be disjoint sets such that $\kappa = |K|, \lambda = |L|$, and $\mu = |M|$. Then $\kappa \cdot \lambda =_c K \times L$ and $(\kappa \cdot \lambda)^{\mu} =_c (M \to K \times L)$. $\kappa^{\mu} \cdot \lambda^{\mu} =_c (M \to K) \times (M \to L)$. Since the sets $(M \to K \times L)$ and $(M \to K) \times (M \to L)$ are equinumerous (a function f from M to $K \times L$ is uniquely determined by the functions $f_1 = \pi_1 \circ f$ in $(M \to K)$ and $f_2 = \pi_2 \circ f$ in $(M \to L)$, where π_1 is the projection map from $K \times L$ to K and π_1 is the projection map from $K \times L$ to L). So

$$(\kappa \cdot \lambda)^{\mu} =_c (M \to K \times L) =_c (M \to K) \times (M \to L) =_c \kappa^{\mu} \cdot \lambda^{\mu}.$$

The other equality follows from the fact that $(M \to (L \to K)) =_c ((M \times L) \to K)$.

3. With \mathfrak{c} the cardinality of the continuum (technically, $|\mathcal{P}(\mathbb{N})|$), show that $\mathfrak{c}^{\mathfrak{c}} =_{c} 2^{\mathfrak{c}}$. You might consider using the results from the previous problem, and also first establishing that $\aleph_0 \cdot \mathfrak{c} =_{c} \mathfrak{c}$.

Solution: First show that $\aleph_0 \cdot \mathfrak{c} =_c \mathfrak{c}$. This amounts to showing that

$$\mathbb{N} \times \mathcal{P}(\mathbb{N}) =_c \mathcal{P}(\mathbb{N}).$$

Clearly $\mathcal{P}(\mathbb{N}) \leq_c \mathbb{N} \times \mathcal{P}(\mathbb{N})$, so by the Schröder-Bernstein Theorem, it suffices to show that $\mathbb{N} \times \mathcal{P}(\mathbb{N}) \leq_c \mathcal{P}(\mathbb{N})$. The following is one (of many) injections from $\mathbb{N} \times \mathcal{P}(\mathbb{N})$ to $\mathcal{P}(\mathbb{N})$: $(n, S) \mapsto S'$, where $m \in S'$ if and only if m = 2n + 1 or m = 2s for some $s \in S$. The only odd number in S' is 2n + 1, so n is uniquely determined by S', and the elements of Scan be obtained by dividing in two all even members of S'.

To show that $\mathfrak{c}^{\mathfrak{c}} =_{c} 2^{\mathfrak{c}}$, consider that

$$\mathfrak{c}^{\mathfrak{c}} =_c (2^{\aleph_0})^{\mathfrak{c}} =_c 2^{\aleph_0 \cdot \mathfrak{c}} =_c 2^{\mathfrak{c}}.$$

The second equality follows from the previous question, and the third from the first part of this question.

4. For $k \in \mathbb{N}$, let the function $f_k : \mathbb{N} \to \mathbb{N}$ be defined by

where k appears n-times. Show that there exists a function f with domain $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} such that $f(k, n) = f_k(n)$. You should consider using the recursion with parameters theorem for this. Next, show that the function

$$e(n) = n^{(n^{(n \cdot \cdot \cdot)^{n}})}$$

where n appears n-times, is a member of the set $(\mathbb{N} \to \mathbb{N})$.

Solution: To set up an application of the recursion with parameters theorem, define $g : \mathbb{N} \to \mathbb{N}$ by g(k) = 1, and $h : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by $h(m,n) = n^m$. Then by the theorem, there is a unique function f : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ that satisfies $f(k,0) = g(k) = 1 = f_k(0)$, and f(k,Sn) = $h(f(k,n),k) = k^{f(k,n)}$.

It can be seen (inductively) that $f(k, n) = f_k(n)$ for all k and n. Finally, e(n) = f(n, n) for all n.

5. Now that we have constructed the natural numbers, i.e., the structured set $(\mathbb{N}, +, \times, \leq, 0, 1)$, show that the integers $(\mathbb{Z}, +, \times, \leq, 0, 1)$ can be faithfully represented as a structured set within our set theoretic universe \mathcal{W} . You will need to describe a construction of the integers, along with the operations of +, \times , the relation \leq , and the elements 0 and 1 from the natural numbers, that can be carried out using, indirectly, the Axioms.

Solution: We can represent the elements of \mathbb{Z} with the set $\mathbb{Z}' = \{0, 1\} \times \mathbb{N}$, with a non-negative integer n corresponding to the pair (1, n) and with a negative integer n corresponding to the pair (0, -n). This is clearly a bijection from \mathbb{Z} to \mathbb{Z}' . Using definition by cases (which corresponds to taking unions of functions, when viewed as sets), we can define + by:

$$(i,n) + (j,m) = \begin{cases} (i,n+m) & \text{if } i = j\\ (1,m-n) & \text{if } i = 0, j = 1, m \ge n\\ (0,n-m) & \text{if } i = 0, j = 1, m < n\\ (1,n-m) & \text{if } i = 1, j = 0, n \ge m\\ (0,m-n) & \text{if } i = 0, j = 1, n < m \end{cases}$$

The operation \times on \mathbb{Z}' can be defined similarly. The element 0 corresponds to (0,0) and 1 corresponds to (1,1). The relation \leq on \mathbb{Z}' is defined by:

 $(i,m) \leq (j,n)$ if and only if i = j = 1 and $m \leq n$ or i = 0and j = 1, or i = j = 0 and $m \geq n$.

- 6. Let (P, \leq) and (Q, \leq) be linearly ordered sets.
 - (a) Define their sum to be the order over the disjoint union of P and Q such that elements of P are less than all of the elements of Q, and elements within P or Q are ordered according to ≤ or ≤ respectively.

Show that the sum of (P, \leq) and (Q, \leq) is a linear order. If they are both well orders, is their sum?

Solution: We may assume that P and Q are disjoint sets. The sum of the two orders is the structured set $(P \cup Q, \ll)$, where for $p, p' \in P$, $p \ll p'$ if and only if $p \leq p'$, for $q, q' \in Q$, $q \ll q'$ if and only if $q \leq q'$, and for $p \in P$ and $q \in Q$, $p \ll q$. More concisely, as a set of ordered pairs over $P \cup Q$, $\ll = \leq \cup \leq \cup P \times Q$.

The relation \ll is reflexive since both \leq and \preceq are. For transitivity, if $a, b, c \in P \cup Q$ with $a \ll b \ll c$ then if $c \in P$ it follows that a and $b \in P$ and so $a \leq b \leq c$ and thus $a \leq c$, so $a \ll c$. Similarly if $a \in Q$, it can be seen that $a \ll c$. The remaining case is when $a \in P$ and $c \in Q$. Then it follows that $a \ll c$, as required.

If $a \ll b$ and $b \ll a$, then both must lie in P or lie in Q. Then the antisymmetries of \leq and \preceq implies that a = b. So \ll is a partially ordered set (we haven't used linearity of \leq or \preceq yet). To see that \ll is linear, let $a, b \in P \cup Q$. If both lie in P or Q then they are comparable via \leq or \preceq respectively, which means that they are \ll -comparable. In the remaining case, one lies in P and the other in Q and so are also \ll -comparable. Thus \ll is a linear order.

Finally, if both are well orders, then so is \ll : Let $W \subseteq P \cup Q$ be nonempty and let $W_P = W \cap P$ and $W_Q = W \cap Q$. If W_P is nonempty, then the \leq -least element of W_P will be the \ll -least element of W. Otherwise, $W = W_Q$ and the \leq -least member of W will be the \ll -least member of W. (b) Define the product of these linearly ordered sets to be the order □ on the set P × Q such that (p,q) □ (p',q') if and only if (q ≺ q') or (q = q' and p ≤ p'). Show that the product of (P, ≤) and (Q, ≤) is a linear order. If they are both well orders, is their product? Solution: To see that □ is a linear order on P × Q is routine and left to the reader. To see that it is a well order, let W ⊆ P × Q be nonempty. Let W_Q = {q ∈ Q | (p,q) ∈ W for some p ∈ P}. Since W is nonempty, then so is W_Q, and so has a ≤-least element q. Since q ∈ W_Q, then the set W_P = {p ∈ P | (p,q) ∈ W is nonempty and so has a ≤-least element p. Then (p,q) ∈ W and is the □-least member of W. Thus □ is a well order.