
MATH 4LT/6LT3 Assignment #2 Solutions
Due: Friday, 3 October by 11:59pm.

1. Consider the following NFA:

q0start q1 q2

q3

a b

b

a
a

Convert this NFA into an equivalent DFA using the procedure provided
in the proof of Theorem 1.3.20. Note: You may disregard any states
in the construction that cannot be reached from the initial state. So
your solution should have far fewer than 16 states.

Solution: The following is a diagram for the DFA produced from this
NFA using the construction in the proof of Theorem 1.3.20. Note that
only 5 of the 16 states are included, since the remaining ones do not play
a role in the processing of a string. The 5 states are labelled according
to the subset of {q0, q1, q2, q3} they correspond to. The label es is for
the empty set.

2. Show that each of the following languages is not regular:

1

(a) L0 = {0n1n2n | n ≥ 0}.

Solution: It suffices to find an infinite set of strings that is pairwise
separable with respect to L0. The following set works (but there
are many others):

Z0 = {0n | n ≥ 0}.

To see this, let 0 ≤ i < j and let w = 1i2i. Then 0iw ∈ L0 but
0jw is not.

(b) L1 = {www | w ∈ {a, b}∗}.

Solution: Let
Z1 = {anb | n ≥ 0}.

Z1 is pairwise separable with respect to L1 since if 0 ≤ i < j, we
have, with v = aibaib, aibv ∈ L1 but a

jbv is not. Since i ̸= j, then
there is no way to break ajv into three identical substrings, since
such a substring must end in b and contain exactly one b.

(c) L2 = {ambn | m ̸= n}.

Solution: There are a couple of ways to solve this. One is to use
some of the closure properties of regular languages and the fact
that the language L = {anbn | n ≥ 0} is not regular (shown
in class). Note that L = L(a∗b∗) ∩ L2. Since the collection
of regular languages over {a, b} is closed under intersection and
complementation, then if L2 is regular, so is L2 and hence so is
L(a∗b∗) ∩ L2 = L, a contradiction.

Alternatively, it can be seen that the set {ai | i ≥ 0} is pairwise
separable with respect to L2.

(d) L3 = {x = y + z | |x| = |y|+ |z| for x, y, z ∈ {1}∗}. L3 is a
language over the alphabet {1,=,+}.

Solution: Let
Z3 = {1n = | n > 1}.

Z3 is pairwise separable with respect to L3 since if 2 ≤ i < j, we
have, with v = 1i−1 + 1, 1i = v ∈ L3 but 1j = v is not.

2

3. Let Σ be an alphabet and w ∈ Σ∗. If w = a1a2 . . . ak for some k ≥ 0
and ai ∈ Σ, define the reverse of w to be the string wr = akak−1 . . . a2a1.
Show that if L is a regular language, then so is Lr = {wr | w ∈ L}.

Solution: One way to prove this is to take a DFA M that accepts L
and modify it so that the resulting NFA M r accepts Lr. To modify M ,
“reverse” its transitions, i.e., if δ(q, a) = q′ is a transition of M , then
include q in the set δr(q′, a), where δr is the transition function of M r.
Further, declare the initial state of M to be the only final state of M r

and add a new initial state R to M r. For each final state q of M , add
q to the transition δr(R, ϵ).

If a string w is accepted by M , then after starting in its initial state,
M will end up in one of its accepting states, q. By reversing this path
of transitions in M , it can be seen that it will be an accepting path for
wr in the NFA M r, after first making an ϵ transition from the state R
to the state q.

On the other hand, if M r accepts some word w, then the path of
transitions from the initial state of M r to its only accepting state must
first pass through one of the accepting states q of M , and then follow a
chain of δr transitions to end up at the initial state of M . By reversing
this chain of transitions, we obtain one that starts at the beginning of
wr, in the initial state of M , and ends up in the state q, one of the final
states of M . Thus, wr is accepted by M . This establishes that for any
word w, M accepts w if and only if M r accepts wr, showing that Lr is
also regular.

4. Exercise 1.9.7.

Solution: Let L be a finite language over the alphabet Σ. We will prove
by induction on the size of L that it is regular. If |L| = 0 then L is
the empty language, and it is easy to come up with a DFA M with
L(M) = ∅ (any DFA that has no accepting states will work).

Next, suppose that |L| = 1, say L = {w}, where w = a1a2 · · · ak for
some k ≥ 0 and ai ∈ Σ. We will show by induction on k that L is
regular. When k = 0, w = ϵ and it is not hard to produce a DFA that
only accepts this string (a 2 state DFA can be found with this property).
Similarly, if k = 1, then there is a 3 state DFA that only accepts the

3

string a1. Using that the concatenation of two regular languages is
regular and that both of the languages {a1a2 · · · ak} (by the induction
hypothesis) and {ak+1} are regular, it follows that {a1a2 · · · akak+1} is
as well.

Now, suppose that n ≥ 1 and that the claim holds for all languages of
size at most n. Assume that |L| = n + 1 and let w be any member of
L. Let L0 = L \ {w} and let L1 = {w}. By induction, L0 and L1 are
regular and so their union, L, is also regular.

An alternate solution of this is to first show that for each string w =
a1a2 . . . ak, there is a k+1-state NFA Nw with L(Nw) = {w}. With the
set of states of Nw equal to {0, 1, . . . , k}, 0 will be the start state, and k
will be the only accept state. For each i < k, there is one transition from
state i to i + 1, labelled by the symbol ai+1. If L = {w1, w2, . . . , wn},
then we can set N to be the NFA that is the union of the NFAs Nw1

through to Nwn . Here, we assume that the set of states of these NFAs
are disjoint (by suitably renaming them), the set of starts states consists
of the start states of each of the NFAs and the set of accept states
consists of the set of accept states of the NFAs. Then L(N) = L.

5. Exercise 1.9.21.

Solution: For B a subset of N, let LB = {an | n ∈ B}. Let S be
ultimately periodic, with n and p given as in the definition. Let S0 =
S ∩ {k ∈ N | k < n} and S1 = S \ S0. So S0 is a finite set containing
all numbers from S that are less than n and S1 contains the other
members of S. Since S0 is finite, then so is LS0 and hence is regular
(by the previous homework question). Since LS = LS0 ∪ LS1 then to
show that LS is regular, it is enough to show that LS1 is.

For each 0 ≤ j < p, let Pj = {m ∈ S1 | m ≡ j mod p}. Clearly
S1 is the finite union of all of the nonempty Pj. So, it suffices to
show that each nonempty LPj

is regular. If Pj is nonempty, let mj be
the smallest member of Pj. Then by the ultimately periodic property,
Pj = {mj + kp | k ∈ N}. Then LPj

= {amj} · {a}∗. Since both {amj}
and {a}∗ are regular, then so is LPj

, as required. Thus LS1 and LS are
regular.

For the converse, Let M = (Q,Σ, s, T, δ) be a DFA with Σ = {a}
and let L = L(M). Let S = {n ∈ N | an ∈ L}. Define the infinite

4

sequence of members of Q, qn, inductively by: q0 = s and for n ≥ 0,
qn+1 = δ(qn, a). It can be seen that for any n ≥ 0, after processing the
string an the DFA M will be in state qn ∈ Q.

Since Q is finite there will be a smallest n ∈ N such that for some p > 0,
qn = qn+p. Choose p to be the smallest positive integer with this prop-
erty. If one considers the transition diagram of M as a directed graph,
then there will be a path of length n going from s to qn, traversing the
distinct states q1 up to qn, followed by a loop of length p, traversing
the states qn up to qn+p−1 and then back to qn. It follows that for any
m ≥ n, qm = qm+p.

Let S0 = {k ∈ N | k < n and ak ∈ L} and let S1 = {k ∈ N |
ak ∈ L and k ≥ n}. Clearly S = S0 ∪ S1. Furthermore, if m ∈ S1,
then am ∈ L, which implies that qm ∈ T . Since qm+p = qm in this case,
it follows that am+p ∈ L and hence that m + p ∈ S1. This establishes
that the set S is ultimately periodic.

The following questions are for students enrolled in MATH 6LT3. Stu-
dents in MATH 4LT3 can treat them as bonus questions.

B1 For L1 and L2 languages over the alphabet Σ, define L1 ≀ L2 to be the
language

{w ∈ Σ∗ | w = a1b1a2b2 . . . akbk for some k ≥ 0, a1a2 . . . ak ∈ L1

and b1b2 . . . bk ∈ L2}.

Prove that if L1 and L2 are regular then so is L1 ≀ L2.

Solution: We first prove a special case of this, when one of L1 or L2

is Σ∗. Once we have shown that L1 ≀ Σ∗ and Σ∗ ≀ L2 are regular, then
since L1 ≀L2 = L1 ≀Σ∗ ∩Σ∗ ≀L2 it will follow that L1 ≀L2 is also regular.

The argument for showing that Σ∗ ≀ L2 is regular is similar to that for
showing that L1 ≀ Σ∗ is, and so we will only deal with the latter claim.
(In fact, Σ∗ ≀L2 = (Lr

2 ≀Σ∗)r and so we can use the result from question
#3 to conclude that it is regular, if L2 is.)

Suppose that L1 is regular and let M = (Q,Σ, s, T, δ) be a DFA with
L1 = L(M). We describe how to construct a DFA M ′ from M with
L(M ′) = L1 ≀ Σ∗. The idea is that when M ′ is processing an input

5

string, it ignores every other symbol. To accomplish this, M ′ will have
a copy of each state of M and its transition function will rely on M ’s
when processing the odd-numbered symbols of an input string. Define

M ′ = (Q ∪Q′,Σ, s′, T ′, δ′),

where Q′ = {q′ | q ∈ Q} is a disjoint copy of Q, T ′ = {t′ ∈ Q′ | t ∈ T}
and δ′ is defined by: δ′(q, a) = q′ and δ′(q′, a) = δ(q, a) for any q ∈ Q
and a ∈ Σ.

We claim that for w = a1b1a2b2 . . . akbk for some k ≥ 0 and ai, bi ∈ Σ,
that w ∈ L(M ′) if and only if a1a2 . . . ak ∈ L(M). To show this we
prove by induction on k, that if after processing a1a2 . . . ak, M is in
state q, then after processing w, M ′ will be in state q′, and conversely.
The claim follows from this since the set of accept states of M ′ is T ′.

When k = 0, this property holds since the initial state of M ′ is the
copy of M ’s initial state. Suppose that the property holds for k and
consider the string v = a1b1a2b2 . . . akbkak+1bk+1. Let q be the state of
M after processing a1a2 . . . ak. Then by induction the state of M ′ after
processing a1b1a2b2 . . . akbk is q′. Then the state of M after processing
a1a2 . . . akak+1 will be δ(q, ak+1), while the state of M

′ after processing
a1b1a2b2 . . . akbkak+1bk+1 will be δ

′(δ′(q′, ak+1), bk+1)). By the definition
of δ′, this state will be δ(q, ak+1)

′, as required. The converse can be
proved similarly.

B2 Exercise 1.9.40.

Solution: A statement and proof of the Pumping Lemma can found
in most standard references for the foundations of computing. For
instance, a proof can be found in Sipser’s book on this subject.

6

