MATH 4LT3/6LT3 Assignment \#3

Due: Friday, October 27, 11:59pm
Upload your solutions to the Avenue to Learn course website. Detailed instructions will be provided on the course website.

1. Determine which of the following binary relations are well orderings. Justify your answers.
(a) The relation \preceq on \mathbb{N}, where $n \preceq m$ if and only if (n is even and m is odd) or (n and m are both even or both odd, and $n \leq m$).
(b) Let Σ be the usual set of 26 letters $\{a, b, c, \ldots, z\}$ and let S be the set of finite strings over Σ (so $S=\Sigma^{*}$). Let \leq on S be the usual alphabetical ordering. So,
should be $<$ not
"less than or equal
to".
(c) For $n \in \mathbb{N}^{+}=\{n \in \mathbb{N} \mid n>0\}$, let $n^{\#}$ be the number of distinct prime factprs of n. The relation \sqsubseteq on \mathbb{N}^{+}defined by $n \sqsubseteq m$ if and only if $n^{\#} \leq m^{\#}$ or ($n^{\#}=m^{\#}$ and $\left.n \leq m\right)$.
2. In Assignment $\# 2$, Question 6, the sum and product of linear orders was defined. It was shown that if (U, \leq) and (V, \preceq) are well orders then so are their sums and products. Denote their sum and product by $(U, \leq)+(V, \preceq)$ and $(U, \leq) \times(V, \preceq)$, respectively.
Let $(U, \leq),(V, \preceq)$, and (W, \sqsubseteq) be well orders.
(a) Show that
$(U, \leq) \times((V, \preceq)+(W, \sqsubseteq))={ }_{o}((U, \leq) \times(V, \preceq))+((U, \leq) \times(W, \sqsubseteq))$.
(b) Does the identity

$$
((U, \leq)+(V, \preceq)) \times(W, \sqsubseteq)=_{o}((U, \leq) \times(W, \sqsubseteq))+((V, \preceq) \times(W, \sqsubseteq))
$$

also hold?
3. Consider the usual ordering \leq on \mathbb{R}. Show that if X is a nonempty subset of \mathbb{R} such that the restriction of \leq to X is a well ordering, then X must be finite or countably infinite.
4. A quasi-order on a set X is a binary relation \preceq on X that satisfies: $x \preceq x$ for all $x \in X$, and if $x, y, z \in X$ with $x \preceq y$ and $y \preceq z$ then $x \preceq z$. So, any partial order on X is a quasi-order on X.
(a) Let V be a vector space over some field \mathbb{F} and define \preceq on $\mathcal{P}(V)$ by $A \preceq B$ if $\operatorname{Span}(A) \subseteq \operatorname{Span}(B)$. Show that \preceq is a quasi-order on $\mathcal{P}(V)$. Is it a partial order in general?
(b) Let \preceq be a quasi-order on the set X an define \sim to be the following binary relation on $X: a \sim b$ if and only if $a \preceq b$ and $b \preceq a$. Show that \sim is an equivalence relation on X.
(c) For X, \preceq and \sim as in the previous part, and $a \in X$, let $[a / \sim]$ denote the equivalence class of \sim that contains a, and let $[X / \sim]$ be the set $\{[a / \sim] \mid a \in X\}$.
Define the binary relation \leq on $[X / \sim]$ by $[a / \sim] \leq[b / \sim]$ if and only if $a \preceq b$. Show that \leq is a well defined relation on $[X / \sim]$ and that it is a partial order on $[X / \sim]$.
5. Continuing with the previous problem, let \preceq be a quasi-order on the set X. Suppose that \preceq also satisfies these two conditions:

- For all $x, y \in X$, either $x \preceq y$ or $y \preceq x$.
- For all subsets A of X, there is some $a \in A$ such that $a \preceq b$ for all $b \in A$.
(a) Show that under these additional assumptions, that the relation \leq on $[X / \sim]$ is a well ordering.
(b) Show that the relation \leq_{o}, restricted to the set $W O(A)$ is a quasiorder that satisfies these two additional conditions (you may make use of results from Chapter 7 for some of this). For A a set, $W O(A)$ is the set of well orderings of subsets of A. So

$$
W O(A)=\{(U, \sqsubseteq) \mid U \subseteq A \text { and } \sqsubseteq \text { is a well ordering of } U\} .
$$

