

Unless otherwise stated, in your solutions you may use the Axiom of Choice, or any equivalent statement that has been discussed in the lectures

1. Let (U, \leq) be a well order. Show that $(U, \leq)=_{o}\left(\left\{\operatorname{Seg}_{\leq}(u) \mid u \in U\right\}, \subseteq\right)$.
2. Let G be an infinite non-abelian group. Show that it has a maximal abelian subgroup, i.e., that there is some subgroup H of G such that H is abelian and if K is an abelian subgroup of G such that $H \subseteq K$, then $H=K$. Note that every group has at least one abelian subgroup, $\{e\}$.
3. Consider the following principle:

For any sets A and B and surjective function $f: A \rightarrow B$, there is a one-to-one function $g: B \multimap A$ such that $f(g(b))=$ b for all $b \in B$.

Show that this principle is equivalent to the Axiom of Choice.
The following is a formally weaker principle than the one above, and so can be deduced from AC (you don't need to show this):

For any sets A and B and surjective function $f: A \rightarrow B$, there is a one-to-one function $g: B \multimap A$.

One of the oldest open problems in Set Theory is to determine if this principle implies AC.
4. Related to the previous question, use AC to show that if A and B are sets such that there are surjections $f: A \rightarrow B$ and $g: B \rightarrow A$, then $A={ }_{c} B$. It is not known if the converse holds, namely, if this principle implies AC.
5. Consider the following statement:

Let A and B be non-empty sets and $f: A \longmapsto B$ be an injective function from A to B. Then there is an onto function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$.
(a) Prove that this statement.
(b) Is this statement equivalent to the Axiom of Choice?
6. Let A and B be sets and let $(A \hookrightarrow B)$ denote the set of partial functions from A to B that are one-to-one. (The text uses a slightly different notation.) So $f \in(A \hookrightarrow B)$ if there is some subset $C \subseteq A$ such that $f \in(C \hookrightarrow B)$. The set $(A \hookrightarrow B)$ can naturally be ordered by inclusion: $f \leq g$ if and only if for all $a \in \operatorname{Domain}(f), a \in \operatorname{Domain}(g)$ and $g(a)=f(a)$. (So considered as sets of ordered pairs, $f \subseteq g$.) It is not hard to see that this ordering is a partial ordering on $(A \hookrightarrow B)$.
(a) Show that if $C \subseteq(A \hookrightarrow B)$ is a chain in this poset, then $\cup C$ is in $(A \hookrightarrow B)$ and is an upper bound of C in the poset.
(b) Show that this poset has a maximal element.
(c) Let $f \in(A \hookrightarrow B)$ be maximal in this poset. Show that either Domain $(f)=A$, and so f is an injection from A to B, or Image $(f)=B$, and so $B={ }_{c} \operatorname{Domain}(f)$.
(d) Conclude that for all sets A and B, either $A \leq_{c} B$ or $B \leq_{c} A$.

