MATH 4LT/6LT3 Assignment #4
Due: Monday, 10 November by 11:59pm.

1. Recall that the language
SAP ={"M"| M is a DTM that accepts "M},

is the Self Acceptance Problem. We saw that this language is CE but
not coCE. Let L =0-SAPU1-SAP. So a string from {0,1}* is in L
if it is of the form Oco, where 0 € SAP or of the form 1o where o is in
the complement of SAP. Prove that L is not CE and is also not coCE.

Solution: One way to show this is to many-one reduce languages that
are not CE or coCE to L. This would imply that L is not CE and not
coCE. We can use the languages SAP and SAP for this. Define py and
p1 to be the functions that on a string x outputs the strings 0 - = and
1 - x respectively. Clearly both of these functions are computable.

We claim that py is a many-one reduction from SAP to L. This is
almost immediate, since if x € SAP, then by definition 0 - z is in L.
Also, if x ¢ SAP, then 0-x ¢ L, since the only strings in L whose first
symbol is 0 are of the form 0 - y for some string y € SAP. Similarly,
p1 is a many-one reduction from SAP to L.

Since SAP is not coCE and SAP is not CE then by Theorem 2.8.7, L
is neither CE nor coCE.

2. Exercise 2.10.15 from the textbook.

Solution: Suppose that B is a computable language, and let Mg be a
halting DTM with L(Mp) = B. Let Mp be the DTM that does the
following on input x € ¥*:

e Run Mp on z,

e Once Mp has halted, if it accepts x, then erase the tape and write
a 1 on the tape and halt, with the head over cell #1. If Mg rejects
x, then erase the tape and write a 0 on the tape and halt with the
head over cell #1.

We claim that M} computes the function x g, since by design, if v € B,
then on input x, M} will output 1 and if z ¢ B, then M} will output
0. So xp is a computable function.

Conversely, suppose that x g is computable and that the DTM M com-
putes it (so it is a halting DTM as well). Let Mg be the DTM that on
input x does the following:

e Run M and wait for the computation to end.
e If the first cell of the tape contains a 1, Mp halts in its accept

state. Otherwise, Mp halts in its reject state.

Then Mp is a halting DTM with L(Mp) = {x € ¥* | xp(x) =1} = B.
So, B is computable.

. Exercise 2.10.16 from the textbook.

Solution: Let B be a CE language and Mp a DTM with L(Mg) = B.
Let M be the DTM that on input x does the following:

e Runs Mp on input z.
e If Mp halts in the reject state, then M will loop.
e If My halts in the accept state, then M accepts .

The DTM M has the property that if x € B then Mp will halt in
its accept state on input x and hence that M will do the same. So
x € L(M). On the other hand, if ¢ B then either Mp will loop on
x, in which case M will as well, or Mp halts and enters its reject state.
In this case, M loops on input x. So, if = ¢ B, then M fails to halt on
input . Thus the set of input strings for which M halts is exactly B.

Conversely, if M has the stated property for B, let Mg be the DTM
that on input a string z does the following:

e Run M on x.

e If M halts, in either the accept or reject state, then Mp accepts

X.

It follows that L(Mp) is equal to the set of strings on which M halts
and so L(Mp) = B, showing that B is CE.

2

4. Exercise 2.10.18, part 1 from the textbook.

Solution: Let B and C' be computable languages with Mp and Mg
halting DTMs with L(Mpg) = B and L(M¢) = C. Let M be the DTM
that does the following on input z = ajas...a, € ¥*:

e Initialize i = 0.
e While 7 < n,

— Run Mg on input ajas . .. a; and run M¢ on input a;1 16,49 . . . ay.
If both DTMs accept, M accepts .
— If not, set i =7+ 1.

e M rejects x.

We claim that M is a halting DTM with L(M) = B - C. It is halting,
since, no matter the length of the input string = ayas...a,, M
will halt after at most |z| iterations of the while loop, and both Mp
and My are halting DTMs. If M accepts a string x, then the only
way for this to happen is that for some i < n, Mg accepts aias ... a;
and Mq accepts a;11ai49 . ..a,. This implies that ajas...a; € B and
Ai110i12 - .. ay € C') which means that x € B - C.

Conversely, if £ = u - v for some v € B and v € C, then in the ith
iteration of the while loop, with i = |u|, Mp will accept ajas .. .a; and
Me will accept a;41a:42 ... a, and so M will accept x. Thus L(M) =
B - C, establishing that this language is computable.

Note that another approach, via non determinism can also be used
to show that B - C'is computable. Rather than searching through all
possible ways to express an input string = as the concatenation of two
other strings v and v and checking to see if these strings are in B and
C respectively, a nondeterministic DTM would first “guess” the value
of ¢ and then check to see if ajay...a; € B and a;11a,12...a, € C.

5. Exercise 2.10.24 from the textbook.
Solution: To slightly simplify this presentation, assume that 3 contains
distinct symbols 0 and 1 (and possibly others) so that we can make

use of our standard encoding of ordered pairs of strings. Let B be a
nonempty CE language and Mp a DTM with L(Mp) = B. Let 0 € B

3

be some fixed string that we will use to define a computable function
f X" — ¥* with B = {f(z) | x € £*}. The idea behind defining f
is via a related function g : ¥* x N — ¥* where g(x,n) is equal to x
if on input x, the DTM Mpg has halted within n steps and accepts =,
and is equal to the fixed string o otherwise.

It can be seen that the range of g is B, since if v+ € B, Mg will
accept x, and if the computation of Mg on input x has length n, then
g(x,n) = x. On the other hand, the only strings that are in the range of
g are, by design, strings that Mpg accepts. The definition of g provides
an algorithm for computing it: on input x and n, run Mg on input x
for up to n steps and see what happens. If within this number of steps,
Mp halts and accepts z, then output x. Otherwise, output o.

Strictly speaking, we need to present a one-variable computable func-
tion on ¥* whose range is B. We can use our encoding method for
ordered pairs to do this. Let M be a DTM that does the following on
input z € X*:

e If 2 is not of the form (z,y) for any strings x, y € ¥*, then M
halts and outputs the string o. So, in this case, M erases its tape,
writes the string o on it and halts in the accept state.

e Otherwise, z = (x,y) for some strings z, y € ¥*. In this case, run
Mg on input z for up to |y| steps. If Mp has halted in the accept
state before |y| steps, M halts in the accept state with the string
x on its tape. It not, then M halts in the accept state with ¢ on
its tape.

It can be seen that M is a halting DTM that computes a function
(closely related to g) whose range is the set B.

Conversely, suppose that f is a computable function whose range is the
language B. Let M; be a DTM that computes f. We will rely on the
fact that the elements of ¥* can be effectively enumerated in the fol-
lowing sense. There is a listing of the members of ¥*, 1, xo,..., x,,.

for which there is an algorithm that one by one, outputs the strlngs in
this sequence. Such a listing can be produced by first listing all strings
of legth 0, then all strings of length 1, then all strings of length 2, and
so on. For a given length n, the strings of length n can be listed in

some definite order, such as lexicographically. Let M be a DTM that
outputs this list.

Let Mp be the DTM that on input a string does the following:

e Initialize i = 0.
e Iterate:

— Run M until it has produced the string z;
— Run the DTM M/ on input z;.

— If My halts with x on its tape (so if f(z;) = z), then M halts
in its accept state.

— If not (so f(x;) #x), set i =i+ 1.

It can be seen that on input x the DTM M will halt (in its accept
state) if and only if z is in the range of f. So L(M) is equal to the
range of the function f, showing that B is a CE language.

The following question is for students enrolled in MATH 6LT3. Students
in MATH 4LT3 can treat it as a bonus question.

B1 Exercise 2.10.39.

Solution: We make use of the fact that the following language is not
computable:

HALT, = {"M7| M is a DTM with e € L(M)}.

This can be (easily) shown using Rice’s Theorem, or can be shown
by many-one reducing some known noncomputable language, such as
SAP, to it.

Now, suppose that there is a computable function ¢ : ¥* — ¥* with
1b(1™)] < |g(1™)] for each n > 0, and suppose M, is a DTM that
computes g. Let M’ be the DTM that does the following on input x:

e If z is not of the form "M ™ for any DTM M, then M’ halts in the
reject state.

e If x ="M for some DTM M, set i to be the number of states of
M.

e Run M, on input 1" and let 1™ be its output (so g(1") = 1™).
e Run M on input € for up to m + 1 steps.

e If before m steps, M has halted, then M’ accepts x if M has
halted in the accept state, and rejects x if M has halted in the
reject state.

e If M hasn’t halted by m + 1 steps, then M’ rejects x.

By design, M’ is a halting DTM, since for any DTM M, M’ will halt
on input "M after at most m + 1 steps, where M has n states and
g(1™) = 1™. Furthermore, M’ will only accept strings of the form "M ™
where M is a DTM that accepts the empty string. To see this, suppose
that M accepts the empty string. Then by definition, it will halt on
input € after at most b(1™) steps. So after at most g(1") steps, M will
have halted. If it has halted in the accept state, then M’ will accept the
string, and it not it will reject. If by g(1™) steps M has not halted, then
by the definition of b, we know that M will never halt on input € and
so "M ¢ HALT,.. Thus M is a halting DTM with L(M) = HALT,,
contradicting that this language is not computable.

