
MATH 4LT/6LT3 Assignment #4
Due: Monday, 10 November by 11:59pm.

1. Recall that the language

SAP = {⌜M⌝ | M is a DTM that accepts ⌜M⌝},

is the Self Acceptance Problem. We saw that this language is CE but
not coCE. Let L = 0 · SAP ∪ 1 · SAP . So a string from {0, 1}∗ is in L
if it is of the form 0σ, where σ ∈ SAP or of the form 1σ where σ is in
the complement of SAP . Prove that L is not CE and is also not coCE.

Solution: One way to show this is to many-one reduce languages that
are not CE or coCE to L. This would imply that L is not CE and not
coCE. We can use the languages SAP and SAP for this. Define ρ0 and
ρ1 to be the functions that on a string x outputs the strings 0 · x and
1 · x respectively. Clearly both of these functions are computable.

We claim that ρ0 is a many-one reduction from SAP to L. This is
almost immediate, since if x ∈ SAP , then by definition 0 · x is in L.
Also, if x /∈ SAP , then 0 ·x /∈ L, since the only strings in L whose first
symbol is 0 are of the form 0 · y for some string y ∈ SAP . Similarly,
ρ1 is a many-one reduction from SAP to L.

Since SAP is not coCE and SAP is not CE then by Theorem 2.8.7, L
is neither CE nor coCE.

2. Exercise 2.10.15 from the textbook.

Solution: Suppose that B is a computable language, and let MB be a
halting DTM with L(MB) = B. Let M ′

B be the DTM that does the
following on input x ∈ Σ∗:

� Run MB on x,

� Once MB has halted, if it accepts x, then erase the tape and write
a 1 on the tape and halt, with the head over cell #1. If MB rejects
x, then erase the tape and write a 0 on the tape and halt with the
head over cell #1.

1

We claim that M ′
B computes the function χB, since by design, if x ∈ B,

then on input x, M ′
B will output 1 and if x /∈ B, then M ′

B will output
0. So χB is a computable function.

Conversely, suppose that χB is computable and that the DTM M com-
putes it (so it is a halting DTM as well). Let MB be the DTM that on
input x does the following:

� Run M and wait for the computation to end.

� If the first cell of the tape contains a 1, MB halts in its accept
state. Otherwise, MB halts in its reject state.

Then MB is a halting DTM with L(MB) = {x ∈ Σ∗ | χB(x) = 1} = B.
So, B is computable.

3. Exercise 2.10.16 from the textbook.

Solution: Let B be a CE language and MB a DTM with L(MB) = B.
Let M be the DTM that on input x does the following:

� Runs MB on input x.

� If MB halts in the reject state, then M will loop.

� If MB halts in the accept state, then M accepts x.

The DTM M has the property that if x ∈ B then MB will halt in
its accept state on input x and hence that M will do the same. So
x ∈ L(M). On the other hand, if x /∈ B then either MB will loop on
x, in which case M will as well, or MB halts and enters its reject state.
In this case, M loops on input x. So, if x /∈ B, then M fails to halt on
input x. Thus the set of input strings for which M halts is exactly B.

Conversely, if M has the stated property for B, let MB be the DTM
that on input a string x does the following:

� Run M on x.

� If M halts, in either the accept or reject state, then MB accepts
x.

It follows that L(MB) is equal to the set of strings on which M halts
and so L(MB) = B, showing that B is CE.

2

4. Exercise 2.10.18, part 1 from the textbook.

Solution: Let B and C be computable languages with MB and MC

halting DTMs with L(MB) = B and L(MC) = C. Let M be the DTM
that does the following on input x = a1a2 . . . an ∈ Σ∗:

� Initialize i = 0.

� While i ≤ n,

– RunMB on input a1a2 . . . ai and runMC on input ai+1ai+2 . . . an.
If both DTMs accept, M accepts x.

– If not, set i = i+ 1.

� M rejects x.

We claim that M is a halting DTM with L(M) = B · C. It is halting,
since, no matter the length of the input string x = a1a2 . . . an, M
will halt after at most |x| iterations of the while loop, and both MB

and MC are halting DTMs. If M accepts a string x, then the only
way for this to happen is that for some i ≤ n, MB accepts a1a2 . . . ai
and MC accepts ai+1ai+2 . . . an. This implies that a1a2 . . . ai ∈ B and
ai+1ai+2 . . . an ∈ C, which means that x ∈ B · C.

Conversely, if x = u · v for some u ∈ B and v ∈ C, then in the ith
iteration of the while loop, with i = |u|, MB will accept a1a2 . . . ai and
MC will accept ai+1ai+2 . . . an and so M will accept x. Thus L(M) =
B · C, establishing that this language is computable.

Note that another approach, via non determinism can also be used
to show that B · C is computable. Rather than searching through all
possible ways to express an input string x as the concatenation of two
other strings u and v and checking to see if these strings are in B and
C respectively, a nondeterministic DTM would first “guess” the value
of i and then check to see if a1a2 . . . ai ∈ B and ai+1ai+2 . . . an ∈ C.

5. Exercise 2.10.24 from the textbook.

Solution: To slightly simplify this presentation, assume that Σ contains
distinct symbols 0 and 1 (and possibly others) so that we can make
use of our standard encoding of ordered pairs of strings. Let B be a
nonempty CE language and MB a DTM with L(MB) = B. Let σ ∈ B

3

be some fixed string that we will use to define a computable function
f : Σ∗ → Σ∗ with B = {f(x) | x ∈ Σ∗}. The idea behind defining f
is via a related function g : Σ∗ × N → Σ∗, where g(x, n) is equal to x
if on input x, the DTM MB has halted within n steps and accepts x,
and is equal to the fixed string σ otherwise.

It can be seen that the range of g is B, since if x ∈ B, MB will
accept x, and if the computation of MB on input x has length n, then
g(x, n) = x. On the other hand, the only strings that are in the range of
g are, by design, strings that MB accepts. The definition of g provides
an algorithm for computing it: on input x and n, run MB on input x
for up to n steps and see what happens. If within this number of steps,
MB halts and accepts x, then output x. Otherwise, output σ.

Strictly speaking, we need to present a one-variable computable func-
tion on Σ∗ whose range is B. We can use our encoding method for
ordered pairs to do this. Let M be a DTM that does the following on
input z ∈ Σ∗:

� If z is not of the form ⟨x, y⟩ for any strings x, y ∈ Σ∗, then M
halts and outputs the string σ. So, in this case, M erases its tape,
writes the string σ on it and halts in the accept state.

� Otherwise, z = ⟨x, y⟩ for some strings x, y ∈ Σ∗. In this case, run
MB on input x for up to |y| steps. If MB has halted in the accept
state before |y| steps, M halts in the accept state with the string
x on its tape. It not, then M halts in the accept state with σ on
its tape.

It can be seen that M is a halting DTM that computes a function
(closely related to g) whose range is the set B.

Conversely, suppose that f is a computable function whose range is the
language B. Let Mf be a DTM that computes f . We will rely on the
fact that the elements of Σ∗ can be effectively enumerated in the fol-
lowing sense. There is a listing of the members of Σ∗, x1, x2, . . . , xn, . . .
for which there is an algorithm that one by one, outputs the strings in
this sequence. Such a listing can be produced by first listing all strings
of legth 0, then all strings of length 1, then all strings of length 2, and
so on. For a given length n, the strings of length n can be listed in

4

some definite order, such as lexicographically. Let M be a DTM that
outputs this list.

Let MB be the DTM that on input a string x does the following:

� Initialize i = 0.

� Iterate:

– Run M until it has produced the string xi

– Run the DTM Mf on input xi.

– If Mf halts with x on its tape (so if f(xi) = x), then M halts
in its accept state.

– If not (so f(xi) ̸= x), set i = i+ 1.

It can be seen that on input x the DTM M will halt (in its accept
state) if and only if x is in the range of f . So L(M) is equal to the
range of the function f , showing that B is a CE language.

The following question is for students enrolled in MATH 6LT3. Students
in MATH 4LT3 can treat it as a bonus question.

B1 Exercise 2.10.39.

Solution: We make use of the fact that the following language is not
computable:

HALTϵ = {⌜M⌝ | M is a DTM with ϵ ∈ L(M)}.

This can be (easily) shown using Rice’s Theorem, or can be shown
by many-one reducing some known noncomputable language, such as
SAP, to it.

Now, suppose that there is a computable function g : Σ∗ → Σ∗ with
|b(1n)| ≤ |g(1n)| for each n ≥ 0, and suppose Mg is a DTM that
computes g. Let M ′ be the DTM that does the following on input x:

� If x is not of the form ⌜M⌝ for any DTM M , then M ′ halts in the
reject state.

� If x = ⌜M⌝ for some DTM M , set i to be the number of states of
M .

5

� Run Mg on input 1n and let 1m be its output (so g(1n) = 1m).

� Run M on input ϵ for up to m+ 1 steps.

� If before m steps, M has halted, then M ′ accepts x if M has
halted in the accept state, and rejects x if M has halted in the
reject state.

� If M hasn’t halted by m+ 1 steps, then M ′ rejects x.

By design, M ′ is a halting DTM, since for any DTM M , M ′ will halt
on input ⌜M⌝ after at most m + 1 steps, where M has n states and
g(1n) = 1m. Furthermore, M ′ will only accept strings of the form ⌜M⌝
where M is a DTM that accepts the empty string. To see this, suppose
that M accepts the empty string. Then by definition, it will halt on
input ϵ after at most b(1n) steps. So after at most g(1n) steps, M will
have halted. If it has halted in the accept state, then M ′ will accept the
string, and it not it will reject. If by g(1n) steps M has not halted, then
by the definition of b, we know that M will never halt on input ϵ and
so ⌜M⌝ /∈ HALTϵ. Thus M is a halting DTM with L(M) = HALTϵ,
contradicting that this language is not computable.

6

