MATH 4LT3/6LT3 Assignment #5 Due: Friday, 24 November, by 11:59pm

Unless otherwise stated, in your solutions you may use the Axiom of Choice, or any equivalent statement that has been discussed in the lectures

- (a) Show that the Pairset Axiom can be deduced from the Replacement Axiom. Hint: first show that there is some two element set S, using some of the other axioms, and then show, if A and B are sets, that there is some definite unary function h such that h[S] = {A, B}.
 - (b) Show that the Separation Axiom can be deduced from the Replacement Axiom.
- 2. Let A be a set and $\chi(A) = (h(A), \leq_{\chi(A)})$ be the well order given by Hartog's Theorem. Show that $\leq_{\chi(A)}$ is a best well ordering of the set h(A).
- 3. Let \mathcal{N} be the class

 $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \dots\}.$

So, \mathcal{N} contains the emptyset and satisfies the property that if $x \in \mathcal{N}$ then $x \cup \{x\}$ is also in \mathcal{N} . Use the Replacement Axiom to show that \mathcal{N} is a set.

This question is related to question #8 from Assignment #1. The usual Axiom of Infinity essentially asserts the existence of the set \mathcal{N} . In order to show that \mathcal{N} exists as a set using the axioms from the textbook requires the use of the Replacement Axiom.

- 4. Using the Axiom of Regularity (or the Principle of Foundation, or the Axiom of Foundation) show that sets with the following properties cannot exist:
 - (a) A set A such that $A = \{A\}$.
 - (b) For some n > 0, a sequence of sets A_i , $0 \le i \le n$ such that $A_{i+1} \in A_i$, for $0 \le i < n$, and $A_1 = A_n$.

5. Use the Axiom of Regularity to show that the construction from question #1 (b) of Assignment #2 satisfies the ordered pair property (OP1). It also satisfies (OP2), but you don't need to show that.

Bonus Question: For κ a cardinal, the cofinality of κ , denoted $cf(\kappa)$, is given in Definition 9.23 of the textbook.

- 1. Show that $cf(\aleph_0) = \aleph_0$ and that $cf(\aleph_1) = \aleph_1$.
- 2. The gimel function on the class of cardinals is defined by: $\exists(\kappa) = \kappa^{cf(\kappa)}$. Use König's Theorem to show that for any cardinal $\kappa, \kappa <_c \exists(\kappa)$.