
MATH 4LT3/6LT3 Assignment #5 Solutions
Due: Friday, 24 November, by 11:59pm

Unless otherwise stated, in your solutions you may use the Axiom of
Choice, or any equivalent statement that has been discussed in the lectures

1. (a) Show that the Pairset Axiom can be deduced from the Replace-
ment Axiom. Hint: first show that there is some two element set
S, using some of the other axioms, and then show, if A and B
are sets, that there is some definite unary function h such that
h[S] = {A,B}.

Solution: We can start with the empty set and apply the power
set operation to it, twice, to produce a 2-element set T = {∅, {∅}} =
PP(∅). Let h(x) be the following unary definite operation:

h(x) =

{
A if x = {∅}
B otherwise

.

Since T is a set and h is a unary definite operation, then

h[T ] = {h(∅), h({∅})} = {A,B}

is also a set.

(b) Show that the Separation Axiom can be deduced from the Re-
placement Axiom.

Solution: Let A be a set and P (x) a unary definite condition.
We need to show that B = {a ∈ A | P (a)} is also a set. There are
two cases to consider. The easy one is when B is empty. Then,
trivially, B is a set. If B is non-empty, then let a0 be some element
of B. For this element a0, Let h(x) be the following definite unary
operation:

h(x) =

{
a if P (a) holds

a0 otherwise
.

By the Axiom of Replacement, h[A] is a set. But

h[A] = {h(a) | a ∈ A} = {a ∈ A | P (a)} = B.
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2. Let A be a set and χ(A) = (h(A),≤χ(A)) be the well order given by
Hartog’s Theorem. Show that ≤χ(A) is a best well ordering of the set
h(A).

Solution: We need to show that if α ∈ h(A) then segχ(A)(α) <c h(A).
Let α ∈ h(A). Then α = [U/ ∼A] for some well ordering U of a subset B
of A. By the Lemma found in the proof of Hartog’s Theorem (Theorem
7.34), we get that segχ(A)(α) =o U and so segχ(A)(α) =c B ≤c A.
By Hartog’s Theorem (and the Axiom of Choice) we also have that
A <c h(A) and so segχ(A)(α) <c h(A), as required.

3. Let N be the class

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . . }.

So, N contains the emptyset and satisfies the property that if x ∈ N
then x ∪ {x} is also in N . Use the Replacement Axiom to show that
N is a set.

This question is related to question #8 from Assignment #1. The
usual Axiom of Infinity essentially asserts the existence of the set N .
In order to show that N exists as a set using the axioms from the
textbook requires the use of the Replacement Axiom.

Solution: We will show that there is a function f with domain N and
with rangeN by applying the version of the recursion theorem stated in
Corollary 11.6 (1). The proof of this version of the recursion theorem
uses the Axiom of Replacement. Define H(x, y) to be the following
definite binary operation:

H(x, y) =


x(y − 1) ∪ {x(y − 1)} if y ∈ N \ {0} and x is a function

with domain {0, 1, . . . , y − 1}
∅ otherwise

.

By the recursion theorem, there is a unique function f with domain N
such that for all n ∈ N, f(n) = H(f |seqN(n), n). We show by induction
on n that f(n) is the nth element of N . For n = 0, f(0) = H(∅, 0) = ∅.
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Assume that n > 0 and that the result holds for all smaller values of
n. We have that

f(n) = H(f |seqN(n), n) = f(n− 1) ∪ {f(n− 1)}

since f |seqN(n) is a function with domain {0, 1, . . . , n−1}. By induction,
f(n− 1) is the (n− 1)st element of N and by definition, the nth entry
is f(n− 1) ∪ {f(n− 1)}, as required.
Since f is a function with domain N, then f [N] is also a set. But
f [N] = N .

4. Using the Axiom of Regularity (or the Principle of Foundation, or the
Axiom of Foundation) show that sets with the following properties
cannot exist:

(a) A set A such that A = {A}.

Solution: Given such a set, define f to be the function with
domain N and range {A} such that f(n) = A for all n. Then for
all n > 0, f(n) ∈ f(n− 1). By definition, A is illfounded. By the
Axiom of Foundation, such a set cannot exist.

(b) For some n > 0, a sequence of sets Ai, 0 ≤ i ≤ n such that
Ai+1 ∈ Ai, for 0 ≤ i < n, and A1 = An.

Solution: The following infinite sequence shows that A0 is ill
founded:

A0 ∋ A1 ∋ · · · ∋ An−1 ∋ An = A1 ∋ A2 ∋ · · ·

5. Use the Axiom of Regularity to show that the construction from ques-
tion #1 (b) of Assignment #2 satisfies the ordered pair property (OP1).
It also satisfies (OP2), but you don’t need to show that.

Solution: To see that (OP1) is satisfied, suppose that {x, {x, y}} =
{x′, {x′, y′}}. Using the Foundation Axiom, it follows that x ̸= {x, y}
and x′ ̸= {x′, y′}, since if, for example, x = {x, y} then we have that
x ∈ x, which implies that x is ill founded. So both {x, {x, y}} and
{x′, {x′, y′}} are 2-element sets. By the axiom of extensionality, either
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x = x′ and {x, y} = {x′, y′} or x = {x′, y′} and x′ = {x, y}. In the latter
case, we have that x′ ∈ x ∈ x′, which implies that x′ is ill founded. So
the former case must hold. From x = x′ and {x, y} = {x′, y′} it follows
that y = y′.

Bonus Question: For κ a cardinal, the cofinality of κ, denoted cf(κ), is
given in Definition 9.23 of the textbook.

1. Show that cf(ℵ0) = ℵ0 and that cf(ℵ1) = ℵ1.

Solution: By definition, ℵ0 = ω = Ord(N). Since N is not equal to the
union of a finite number of finite sets, then cf(ℵ0) ≥c ℵ0. Also since N
can be expressed as a countable union of finite sets, then cf(ℵ0) ≤c ℵ0

(in general, cf(κ) ≤c κ) and so cf(ℵ0) = ℵ0.

To show cf(ℵ1) = ℵ1 we just need to show that cf(ℵ1) ≥c ℵ1 or that
cf(ℵ1) >c ℵ0. This follows, since any countable union of countable
sets is countable, so ℵ1, being uncountable, can’t be expressed in this
manner.

2. The gimel function on the class of cardinals is defined by: (κ)ג = κcf(κ).
Use König’s Theorem to show that for any cardinal κ, κ <c .(κ)ג

Solution: Let γ = cf(κ). Then there are disjoint sets Ki, i ∈ γ such
that Ki <c κ and κ =c

⋃
i∈γ Ki. Then by König’s Theorem,

κ =c

⋃
i∈γ

Ki <c

∏
i∈γ

κ = κγ = κcf(κ).
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