MATH 4LT/6LT3 Assignment #5 Solutions
Due: Friday, 21 November by 11:59pm.

1. Determine if the following language is computable. Justify your answer.

NON-BLANK is equal to the set of strings " M " such that M
is a DTM that when started with an empty tape eventually
writes a non-blank symbol on its tape.

Solution: If a Turing machine M never writes a nonblank symbol then
all that it does during its computation is move to the left or right, and
write out blank symbols on the tape. Because of this limited behaviour,
M will very quickly start repeating itself, or come to an early halt. On
empty input, the tape will remain blank and so M’s configuration can
be specified by its current state, and the position of the read/write
head, relative to the left end of the tape.

Since M’s tape has a left end and since, whenever it is reading the
first cell, an instruction to move left results in the read /write head not
moving at all, it follows that if M ever reaches some non-halting state g
more than once, then M will never halt. So, if we let M run on empty
input for |@| steps then either we will see it write some non-blank
symbol, or M will halt, without writing a non-blank symbol before |Q)|
steps or M’s tape will remain blank, and M will have repeated some
non-halting state q.

In the latter case, we can conclude that M has entered an infinite
loop (and will occupy state ¢ infinitely often) and will never write a
non-blank symbol.

So, we conclude that the language NON-BLANK is computable. The
halting DTM M’ that does the following on input x will have NON-
BLANK as its language:

e Check to see if z ="M for some DTM M. If not, reject.

e Let n be the number of states of M.

e Run M on empty input for up to n steps. If before then M has
written a non-blank symbol, then M’ accepts x. Otherwise it
rejects x.

2. Exercise 2.10.31 from the textbook.

Solution: Let B and C be languages over the alphabet ¥, with B
computable and C nontrivial. Let z and y be strings over ¥ with
x € C and y ¢ C. Recall that in a previous homework assignment, it
was shown that the function xp : ¥* — {0,1} is computable, since B
is, where xp(z) = 1 if z € B and is equal to 0 if z ¢ B.

Define p : £* — 3* to be the function with p(z) = x if 2 € B and
p(z) = yif z ¢ B. Then p is computable, since it can easily be
computed from the function yp. It can be seen that p is a many-one
reduction of B to (', showing that B <, C.

3. Exercise 2.10.38, parts 4 and 5, from the textbook.

Solution: For part (4), to show that HALT-ALL is not computable it
suffices to show that HP <,, HALT-ALL since we know that HP is
not computable. Let p : ¥* — ¥* be the computable function that on
input a string ("M 7, x) produces the string "M + 2’7, where M + 2’ is
the DTM that on input a string y does the following;:

e Erases y, and writes x on its tape.
e Runs the DTM M.

We see that if M halts on input z, then M/ will halt on all strings y and
so "M € HALT-ALL. On the other hand, if M doesn’t halt on input
x, then M doesn’t halt on any inputs and so "M." ¢ HALT-ALL

in this case. This shows that p is a many-one reduction from HP to
HALT-ALL.

For part (5) we can use Rice’s theorem to show that this language is not
computable. Let P be the property of a language that it has exactly 12
members. Then this is a nontrivial property of CE languages and so the
language Lp = {"M ™| M is a DTM such that L(M) has property P}
is not computable. But this is the language ACCEPTS-DOZEN.

4. Exercise 3.10.12 from the textbook.

Solution: To show that Y is not computable, we will show that HP <,,
Y. Let p be the computable function that on input a string ("M, x),

2

with M a DTM and x a string, outputs the string "M, where M is
the DTM that on input a string y does the following;:

e Erases y, and writes x on its tape.
e Runs the DTM M.

Note that this is the same function used in the previous exercise. We
claim that p is a many-one reduction of HP to Y. If ("M, z) € HP
then on input x, M eventually halts. Let C' be the number of steps for
this to happen. Then the runtime of M. on input a string y is equal
to |y| + |z|. This is roughly the number of steps needed by M/, to erase
the input string y and write the fixed string z. So, on input |y|, the
runtime of M/ is approximately |y| + (|| + C), which is a polynomial
in |y| (since x is a fixed string in the definition of M. Thus M, is a
polynomial-time DTM and so p({("M 7, z)) € Y.

On the other hand, if ("M, x) ¢ HP then M doesn’t halt on input =
and so for any string y, M. does not halt, which implies that M is not
a polynomial-time DTM and so p({"M ", z)) ="M." ¢ Y.

. A triangle of a graph G is a set of three distinct vertices a, b, and ¢ of
G such that there are edges in G between each pair of vertices. Let

T = {(G) | G is a graph that has a triangle}.

Show that T is PTIME, i.e., demonstrate that there is an algorithm
that decides if a given graph has a triangle or not, and whose run time
can be bounded by a polynomial in the number of vertices of G.

Solution: Let G be a graph with n vertices. To determine if G has a
triangle, we need only search over all triples of vertices (a, b, ¢) of G to
see if any of them form a triangle in G. The number of such triples to
check is equal to n(n—1)(n—2) < n®. To check if a given triple (a, b, c)
is a triangle, we need to search through the edge set of G' to determine if
(a,b), (b,c), and (c,a) are edges. The number of edges of G is bounded
by n?, and so the number of steps needed to determine if a given triple
is a triangle in G can be bounded by a quadratic polynomial in n. Since
we need to conduct this test at most n3 times (one for each potential
triangle), the above algorithm has run-time that can be bounded by a
5th degree polynomial in n.

The following question is for students enrolled in MATH 6LT3. Students
in MATH 4LT3 can treat it as a bonus question.

Bl Let A = {"M"| M is a DFA with L(M) # 0}, i.e., A consists of the
codes of all DFAs that accept at least one string. Here the details of
the coding scheme for DFAs are not important for the purpose of this
question. One can use a similar scheme to the one for coding DTMs.
Show that A is a computable language, and in fact that A € P, the
class of polynomial-time solvable languages. To show this you can
informally describe an algorithm that solves this problem and provide

a polynomial upper bound on its run-time, as a function of the size of
the DFA.

Solution: Consider the transition diagram of a DFA M. It can be
viewed as a digraph G whose edges are labelled with the letters of M’s
alphabet. If M accepts some word ajas...ax, then we can trace out
a directed path in G of length k£ from M’s initial state to one of its
accepting states (the edges in this path will be labelled with the a;’s,
in order). Conversely, if there is a directed path in G' from M’s initial
state to one of its accepting states, then the word corresponding to the
concatenation of the labels of the edges in the path will be accepted by
M. Thus, M will accept some word if and only if there is a directed
path from M’s initial state to one of its accepting states. If there is
such a path, then there will be one whose length can be bounded by
the number of edges of G, since if any edge is repeated, then a shorter
path can be constructed by removing a segment of the given path.

The above shows that the following algorithm will correctly decide
membership in A: on input "M for some DFA M = (Q, %, ¢, F,),

e First check to seeif g, € F'. If so, then M accepts the empty word,
and in this case, we accept "M ' and halt. If not, then

e build the transition diagram of M, as a directed graph G. The
vertices of G will be the states of M, and for states ¢ and ¢/, there
will be an edge from g to ¢’ if, for some symbol a € ¥, §(q,a) = ¢'.

e For each accepting state ¢ € F', check to see if there is a directed
path from ¢, to ¢ in G. If there is one, we accept "M ' and halt.

e If after checking for each accepting state ¢ we do not find a directed
path, we reject " M ' and halt.

Since we are given the transition function of M as input (maybe as a
table of transitions, or a list of the transitions, represented as tuples
of the form (q,a,q’), we can construct the graph G in time bounded
by some small degree polynomial in |"M7|. Note that |G| will have
size less than (or at least comparable to) |"M 7|, assuming that we are
using a reasonable scheme to represent graphs and DFAs as strings.
Checking if g; € F' can also be done in time bounded by a degree one
polynomial in |"M7|. In the discussion of the language EUL-CYCLE in
Example 3.2.12 of the textbook, part of the polynomial-time algorithm
presented there checks to see if pairs of vertices are mutually reachable.
In the third step in the above algorithm, something similar (and sim-
pler) needs to be done, namely, check to see if some accepting state is
reachable from the initial state. As noted in the example, this sort of
check can be carried out in time bounded by some polynomial in the
size of the graph, and hence in |"M™|. This shows that A € P, since
the runtime of the above algorithm can be bounded by a polynomial
in "M

