
MATH 4LT3/6LT3 Assignment #6

Note: This assignment will not be graded. You are strongly encouraged to
work on the following problems and to compare your solutions to the posted
solutions. At least one of the following questions will appear on the upcoming
final exam. Unless otherwise stated, in your solutions you may use any of
the ZFC axioms.

1. (a) Let E be a set of transitive sets. Show that
⋂
E is a transitive set.

Solution: A set A is transitive if whenever x ∈ A, then x ⊆ A,
or equivalently, whenever x ∈ A and y ∈ x, then y ∈ A.

Let x ∈
⋂

E and y ∈ x. We need to show that y ∈
⋂

E , i.e., that
y ∈ A for all A ∈ E . Let A ∈ E . Since x ∈

⋂
E then x ∈ A and

since A is transitive, then y ∈ A, as required.

(b) Show that every von Neumann ordinal is a transitive set.

Solution: Let α be an ordinal. Then by definition, α = vU [A] for
some well ordered set U = (A,≤), where vU is the von Neumann
map for U .

Then α = {vU(u) | u ∈ A} and for all u ∈ A, vU(u) = {vU(v) |
v < u}. So if x ∈ α, then x = vU(u) for some u ∈ U . Let y ∈ x.
Then y ∈ vU(u), so y = vU(v) for some v < u in A. But then
y ∈ α, showing that x ⊆ α. Thus α is transitive.

(c) For A a set, define the following sequence of sets: T0(A) = {A},
and given Tn(A), Tn+1(A) =

⋃
Tn(A). Let T (A) =

⋃
n≥0 Tn(A).

i. Explain why the function that send n ∈ N to Tn(A) exists.

Solution: The existence of this sequence follows from the
Recursion Theorem (Corollary 11.6 (1)). The definite unary
operation H(x, y) to use is

H(x, y) =


{A} if y = 0⋃
x(y − 1) if y ∈ N \ {0} and

x is a function with y − 1 in its domain

∅ otherwise

.
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ii. Prove that T (A) is a transitive set that contains A.

Solution: Since in general, for any set X, if y ∈ X, then
y ⊆

⋃
X, then for all n, if x ∈ Tn(A), then x ⊆

⋃
Tn(A) =

Tn+1(A). So if x ∈ T (A), then x ∈ Tn(A) for some n ≥ 0, and
then x ⊆ Tn+1(A) ⊆ T (A).

iii. Show that if M is any transitive set that contains A then
T (A) ⊆ M .

Solution: It suffices to show that for all n, Tn(A) ⊆ M . By
assumption, this holds for n = 0. Assume that it holds for
Tn(A). Since M is transitive, then for each x ∈ Tn(A) ⊆ M ,
x ⊆ M . If y ∈ Tn+1(A), then y ∈ x for some x ∈ Tn(A). Since
x ⊆ M , then y ∈ M and so Tn+1(A) ⊆ M .

Note that this shows that T (A) is the smallest transitive set
that contains A and so is called the transitive closure of A.
Another way to show that such a set exists, is to observe that
since A is a set, then for some ordinal α, A ∈ Vα. Since
we’ve shown that this set is transitive, and from part (a) that
the intersection of a set of transitive sets is transitive, then
the smallest transitive set that contains A is equal to the
intersection of all transitive subsets of Vα that contain A.

Here is another characterization of T (A). We claim that for
a given n, x ∈ Tn(A) if and only if there are sets A = x0 ∋
x1 ∋ · · · ∋ xn−1 ∋ xn = x. Call this an ∈-chain of length n.
We can prove this by induction. For n = 0, the claim holds,
since T0(A) = {A}. Suppose that it holds for n and consider
Tn+1(A). We have that for a set x,

� x ∈ Tn+1(A) if and only if

� x ∈ y for some y ∈ Tn(A) if and only if

� for some sets xi, A = x0 ∋ x1 ∋ · · · ∋ xn−1 ∋ xn = y and
x ∈ y.

So x ∈ Tn+1(A) if and only if an ∈-chain of length n+1 exists
that starts with A and ends with x. So, T (A) is the set of all
sets x that can be obtained in this way, for some n.

2. (a) Let U = (A,≤) be a best wellordered set. Show that |A| = ord(U).
Here, |A| denotes the von Neumann cardinal of the set A.
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Solution: U = (A,≤) is a best wellordered set if it is a well
ordered set such that for all a ∈ A, |segU(a)| <c |A|. Here segU(a)
is the proper initial segment of U consisting of all elements < a.

We know that |A| is the least ordinal α such that A =c α. Since U
is a well order on A then ord(U) =c A and so |A| ≤ ord(U) =o U .
If |A| < ord(U) =o U then the ordinal |A| is order isomorphic
to a proper initial segment of the ordinal ord(U) and hence of
U (since this is one way to describe the ordering on the class of
ordinals). Since ≤ is a best wellordering of A, then every proper
initial segment of U is <c A and so we conclude that |A| <c A, a
contradiction. So |A| = ord(U).

(b) Find a well ordered set V = (B,≤) such that |B| ≠ ord(V ).

Solution: We just need to find a well ordering of a set B that
isn’t a best wellorder. For example, let B be the ordinal ω + 1.
Then ord(B) = B = ω+1 and since B is a countably infinite set,
|B| = ω ̸= ord(B).

(c) Show that the class of all von Neumann ordinals, ON, is not a set.

Solution: Suppose that ON is a set. Then ON is an ordinal,
since it is transitive and ∈-connected. To see this, suppose that
α ∈ ON and β ∈ α. Then β is an ordinal and so β ∈ ON. So
ON is a transitive set. ON is ∈-connected, since if α, β ∈ ON
then either α = β, α ∈ β or β ∈ α. Since ON is an ordinal and
ON contains all ordinals, then ON ∈ ON, which contradicts the
Axiom of Foundation.

Alternatively, if ON is a set, then we’ve shown that it is an ordinal,
and then so is ON + 1. But then ON + 1 ∈ ON and then we get
that some proper initial segment of ON is order isomorphic to
ON . This can’t happen in a well ordered set.

(d) Show that the class of all von Neumann cardinals, Cardv, is not a
set.

Solution: Suppose that Cardv is a set. Then so is the set A =⋃
Cardv. (Note that A is actually an ordinal, since the supremum

of any set of ordinals, is the union of the set, and is an ordinal,
since it is transitive and ∈-connected.) If κ is a cardinal, then
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κ ∈ Cardv and so κ ⊆ A. So, for all cardinals κ, κ ≤c A. In
particular, P(A) =c |P(A)| ≤c A. But we know from Cantor that
A <c P(A) and so we get the contradiction that P(A) <c P(A).
Thus A, and hence Cardv are not sets.

Another way to see this is to use the Axiom of Replacement and
part (c). Consider the definite unary operation that maps a car-
dinal κ to the unique ordinal α such that κ = ℵα. We saw in class
that every cardinal is an aleph, so this operation is well defined;
call it H(x). If Cardv is a set, then H[Cardv] is also a set, but this
is the class of all ordinals, which is not a set.

3. Recall the definition of rank(A), the rank of the set A.

(a) What are the ranks of N and P(N)?

Solution: The rank of a set A is the least ordinal α such that
A ∈ Vα+1 and so is the least α such that A ⊆ Vα.

This can be shown more directly by using part (b) of this question,
since the rank of the nth member of N is n (shown below, by
induction on n) and so the rank of N is the supremum of the set
of natural numbers, and so is ω.

If we use that N = {∅, {∅}, {{∅}}, . . .} (the version of the natural
numbers given by Zermelo’s infinity axiom), then we will show
that rank(N) = ω. We first note that this rank cannot be equal
to n for some n ∈ N, since then N ⊆ Vn. But this is a finite set,
which would imply that N is also finite. So, rank(N) ≥ ω.

To see that it is equal to ω, it suffices to show that rank(N) ≤ ω
or equivalently that N ⊆ Vω. We can show this by proving that
for n ∈ N, rank(n) = n, or equivalently that n ⊆ Vn. This
can be shown by induction on n: for n = 0, n = ∅ and then
n ⊆ V0 = ∅. Suppose that n ⊆ Vn, or equivalently that n ∈ Vn+1.
Then n+ 1 = {n} ⊆ Vn+1, as required.

So for all n ∈ N, rank(n) = n, and so n ∈ Vω. But then N ⊆ Vω,
showing that rank(N) ≤ ω.

Since N ⊆ Vω, then P(N) ⊆ Vω+1, since each member of P(N) is a
subset of Vω, and so is a member of Vω+1. So rank(P(N)) ≤ ω+1.
This rank can’t be less than ω + 1, since this would imply that
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P(N) ⊆ Vω, which then would imply that N, a member of P(N),
would have finite rank. So rank(P(N)) = ω + 1.

(b) Prove that

� if x ∈ A, then rank(x) < rank(A).

� rank(A) = sup{rank(x) + 1 | x ∈ A}.

Solution: Let α = rank(A). A is non-empty and so α > 0. We
have that A ⊆ Vα and so x ∈ Vα, which implies that x ⊆ Vβ for
some β < α. Thus rank(x) ≤ β < α = rank(A).

Let β = sup{rank(x) + 1 | x ∈ A} and α = rank(A). For x ∈ A,
x ∈ Vrank(x)+1 (this holds for any set x, by the definition of rank)
and so x ∈ Vβ. Thus A ⊆ Vβ and so α = rank(A) ≤ β.

If x ∈ A, then by the previous part, rank(x) + 1 ≤ rank(A) = α
and so β ≤ α. Thus α = β.

(c) Show that for α an ordinal, rank(α) = α.

Solution: We prove this by induction on α. For α = 0, this is
immediate. Suppose it holds for α, and consider α + 1. We have
that α + 1 = α ∪ {α} and so by part (b),

rank(α + 1) = sup{rank(x) + 1 | x ∈ α ∪ {α}} = α + 1,

since rank(α) + 1 = α + 1 and for all x ∈ α, rank(x) + 1 ≤ α.

If α is a limit ordinal, then α = {β ∈ ON | β ∈ α} and then by
induction,

rank(α) = sup{rank(β) + 1 | β ∈ α} = sup{β + 1 | β ∈ α} = α.

4. Recall the cumulative hierarchy, V =
⋃

α∈ON Vα. We saw that all sets
belong to V .

(a) Show that if A ∈ Vω, then A and T (A) are finite sets and T (A) ∈
Vω. (See question #1.)

Solution: Since A ∈ Vω then A ∈ Vn for some n > 0 and so
A ⊆ Vn−1. By induction, it is easy to see that each Vk is a finite
set, for k ∈ N, and so A is finite, since it is a subset of a finite
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set. Furthermore, we saw in class that each Vn is transitive and so
by Question #1, T (A) ⊆ Vn and hence that T (A) ∈ Vn+1, which
implies that T (A) ∈ Vω. It also follows that T (A) is finite, since
it is a subset of Vn, a finite set.

(b) Show that for A a set, if T (A) is a finite set, then A ∈ Vω.

Solution: We will show, by induction on n, that if rank(A) ≥
n, then |T (A)| ≥ n. From this the result follows, since by the
contrapositive, if |T (A)| < n for some natural number n, then
rank(A) < n, and from this it follows that A ∈ Vω.

We prove that if rank(A) ≥ n, then |T (A)| ≥ n, by induction
on n. The claim holds for n = 0. Suppose that it holds for n
and let A be a set with rank ≥ n + 1. Then by part (b) of the
previous question, there is some x ∈ A that has rank ≥ n (or
else all member of A have rank less than n, which by part (b)
implies that the rank of A is at most n). But then |T (x)| ≥ n
and since T (x) ⊆ T (A), we have that |T (A)| ≥ n as well. But the
set A belongs to T (A) and not to T (x) and so |T (A)| ≥ n+ 1, as
required.

To see that A /∈ T (x), we can use the alternate characterization
of T (x) from earlier. If A is in T (x), then there is an ∈-chain
starting at x and ending at A. But since x ∈ A, we contradict the
Axiom of Foundation.

(c) Find a finite set B such that B /∈ Vω.

Solution: From the previous part, we just need to find a finite set
B such that T (B) is infinite. For any infinite set A, let B = {A}.
Then B is finite (it only has one element), but the set A is a subset
of T (B), and so B /∈ Vω.

(d) Show that the set Vω satisfies all of the ZFC axioms, except for
the Axiom of Infinity and the Replacement Axiom.

Solution:

(I) Axiom of Extensionality. This hold for all sets, and so in
particular it holds for sets in Vω.

(II) Emptyset and Pairset Axiom. ∅ is in Vω , and if A,
B ∈ Vω, say they belong to Vn, then {A,B} belongs to Vn+1.
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(III) Separation Axiom. If A belongs to Vn for some n and B
is a subset of A defined using this axiom, then B will also
belong to Vn.

(IV) Powerset Axiom. If A is in Vn then P(A) belongs to Vn+1.

(V) Unionset Axiom. If A ∈ Vn, then A ⊆ Vn since this set is
transitive, and so for each x ∈ A, x ∈ Vn. Thus if x ∈ A, then
x ⊆ Vn, since this set is transitive. But then the union of these
sets, namely

⋃
A, is also a subset of Vn, and so

⋃
A ∈ Vn+1 .

(VII) Axiom of Choice. If f is a choice function for some P ⊆
A× B with A and B in Vω, then A× B is also in Vω and so
f , being a subset of this product, is also in Vω .

(IX) Axiom of Foundation. Every set is grounded, and so every
set in Vω is as well.

Note that the members of Vω are called the hereditarily finite sets.

5. Consider the following sequence, indexed by the ordinals, of cardinals:

ℶ0 = ℵ0 = |N|,
ℶβ+1 = 2ℶβ ,

ℶλ = sup{ℶβ | β < λ}, if λ is a limit ordinal.

(a) Justify the existence of this sequence.

Solution: This sequence is indexed by the ordinals and has a
recursive definition, and so it follows from the Recursion theorem
(Theorem 12.18) that this sequence of sets exists.

(b) Show that |Vω| = ℶ0.

Solution: Vω is a countable union of countable sets and so is
countable. Thus |Vω| = ℵ0 = ℶ0.

(c) Show that for any ordinal α, |Vω+α| = ℶα. For the definition of
ordinal addition used here, consult Theorem 12.19.

Solution: We can show this by induction on α. The previous
part establishes the base. Suppose that it holds for α. Then

Vω+(α+1) = V(ω+α)+1 = P(Vω+α),
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and so

|Vω+(α)+1)| = |P(Vω+α)| = 2|Vω+α| = 2ℶα = ℶα+1.

For λ a limit ordinal, Vω+λ =
⋃

β<λ Vω+β and so

|Vω+λ| = |
⋃
β<λ

Vω+β| = sup{|Vω+β| | β < λ} = sup{ℶβ | β < λ} = ℶλ.
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