
MATH 4LT/6LT3 Assignment #6

Due: Monday, 1 December by 11:59pm.
Note: Assignments that are submitted after this deadline, but before 11:59pm
on Friday, December 5 will be accepted, without any late penalty.

1. Exercise 3.10.15 from the textbook.

Solution:

(a) Suppose that the languages B and C are PTIME over the same
alphabet Σ, and let A = B · C. Let MB and MC be polynomial-
time DTMs whose languages are B and C respectively. Let MA

be the DTM that on input a string x = x1x2 . . . xn ∈ Σ∗ does the
following:

� Set i = 0.

� While i ≤ |x|,
– Set b = x1x2 . . . xi and c = xi+1xi+2 . . . xn,

– Run MB on input b and MC on input c. If both strings
are accepted, then accept x.

– Set i = i+ 1.

� Reject x.

By design, L(MA) = B · C. To see that MA is a polynomial-
time DTM, let pB(n) and pC(n) be polynomials that bound the
runtimes of MB and MC respectively. We may assume that both
polynomials are increasing. The main loop of the DTM MA is
executed at most n = |x| times, and for each pass through the
loop, the DTMs MB and MC are run on strings whose length is
at most n. So, it will take at most pB(n)+ pC(n) steps, plus some
additionalsteps to increment the counter i and set up the strings
b and c. The number of these additional steps can be bounded
by a (linear) polynomial q(n)in n. So the runtime of MA can be
bounded by n(pB(n) + pC(n) + q(n)), which is a polynomial in n.
Thus B · C is PTIME.

1

(b) Suppose that the languages B and C are NP over the same alpha-
bet Σ, and let A = B · C. Let MB and MC be polynomial-time
NTMs whose languages are B and C respectively. The descrip-
tion of the machine MA from the previous part serves as a de-
scription of a polynomial-time NTM whose language is B ·C. The
only difference is that in this part, the machines MA and MB are
polynomial-time NTMs. In the step where these machines are run
on the strings b and c, if these strings are in B and C respectively,
then there will be accepting computations of MB and MC on these
strings.

The same polynomial bound on the runtime of MA applies in this
part as well. No matter whether the strings b and c are accepted
by MB and MC , the computations will take at most pB(n) and
pC(n) steps.

(c) Suppose that B and C are coNP languages over the alphabet Σ.
To show that B ·C is coNP, we need to show that the complement
of B ·C is NP. Rather than present a description of a polynomial-
time NTM whose language is this complement, we can approach
this problem in terms of verifiers. Since B and C are coNP, then
their complements have verifiers. We can use them to describe
a verifier for the complement of B · C as follows: given a string
x = x1x2 . . . xn ∈ Σ∗ to show that x /∈ B · C, we need to show
that for all i ≤ n, that either the string x1x2 . . . xi /∈ B or that
xi+1xi+2 . . . xn /∈ C. So a certificate that can be used to verify that
x /∈ B · C can consist of a sequence of n + 1 certificates that can
be used to show, for each i ≤ n that either x1x2 . . . xi /∈ B or that
xi+1xi+2 . . . xn /∈ C. The length of this certificate can be bounded
by the product of n and the polynomial bounds associated with
the two verifiers for B and C.

As an alternative to this solution, we can describe a polynomial-
time NTM whose language is the complement of B · C. The de-
scription of such an NTM is similar to the description of the DTM
in part 1. The only difference is that MB and MC are polynomial-
time NTMs whose languages are B and C respectively:

� Set i = 0.

� While i ≤ |x|,
– Set b = x1x2 . . . xi and c = xi+1xi+2 . . . xn,

2

– Run MB on input b and MC on input c. If both strings
are rejected, then reject x.

– Set i = i+ 1.

� Accept x.

The same estimate of the runtime for the DTM in part 1 applies
to the runtime of this NTM.

2. Exercise 3.10.19 from the textbook.

Solution: This exercise was removed from this assignment.

3. Exercise 3.10.21 from the textbook.

Solution:

1. Clearly ≡p
m is reflexive, since for all B, B ≤p

m B, and by definition,
it is symmetric. To see that it is transitive, we can use Theorem
3.4.18 from the textbook.

2. Let A be a nontrivial PTIME language and B any other nontrivial
language. We claim that A ≤p

m B. To see this, let b and b′ be
strings with b ∈ B and b′ /∈ B. Define ρ to be the function
such that for x ∈ {0, 1}∗, if x ∈ A, then rho(x) = b and if x /∈ A,
rho(x) = b′. Since A is PTIME, then the function ρ is polynomial-
time computable (see Exercise 2.10.31 from Assignment #5 for a
similar result). Since ρ is a many-one reduction from A to B, it
follows that A ≤p

m B.

If B is a nontrivial PTIME language, then by the above A ≤p
m B

and B ≤p
m A both hold, showing that A ≡p

m B. Now, suppose that
A ≡p

m B. Then BlepmA and so by Theorem 3.4.14, it follows that
B is PTIME as well. Thus the set of nontrivial PTIME languages
forms an equivalence class of ≡p

m.

3. LetA andB be NP-complete languages. Then by definition, A ≤p
m

B and B ≤p
m A since both languages are also NP. Thus A ≡p

m

B. On the other hand, if C is a language with A ≡p
m C, then

C ≤p
m A, which implies that C is an NP language. Also, A ≤p

m C
implies that C is NP-hard, since the relation≤p

m is transitive. This
shows that C is also NP-complete and that the set of NP-complete
languages forms an equivalence class of ≡p

m.

3

4. If these two equivalence classes are equal then every NP-complete
language is also PTIME. Then by Theorem 3.5.5, NP = P . Also,
by that theorem, we conclude that if NP = P then each NP-
complete language is PTIME, showing that the two equivalence
classes are equal.

4. Let SAT2 be the language

{⌜ϕ⌝ | ϕ is a Boolean formula that has at least two satisfying assignments}.

(a) Show that SAT2 is an NP language.

Solution: The following is a high level description of a polynomial-
time NTM M such that L(M) = SAT2. This establishes that
SAT2 is an NP language. Let M be the NTM that on input a
string ⌜ϕ⌝ for some Boolean formula ϕ does the following:

� Finds the set S of Boolean variables that appear in ϕ,

� guesses two different assignments µ : S → {0, 1} and ν : S →
{0, 1},

� checks to see if both of them satisfy ϕ. If so, then M accepts
the string, and if not, it rejects the string.

The second step is where the nondeterminism enters into the op-
eration of M . The guesses of µ and ν can be carried out in time
bounded by a polynomial in the length of ⌜ϕ⌝ since the set S has
size smaller than this number, and the guesses can be coded as
strings of 0’s and 1’s of length |S|.
The other two steps can be carried out in polynomial time as a
function of |⌜ϕ⌝| .
A string is accepted by M if and only if there are two distinct
assignments that satisfy the formula that the string encodes. Thus
L(M) = SAT2.

(b) Show that SAT ≤p
m SAT2.

Solution: Given a Boolean formula ϕ, let x be some Boolean vari-
able that does not occur in ϕ. Let ϕ′ be the formula ϕ ∧ (x ∨ x).
Let ν be a truth assignment for the variables that occur in ϕ and
define ν0 and ν1 to be truth assignments that extend ν by setting

4

ν0(x) = 0 and ν1(x) = 1. It is not hard to see that if ν satisfies
ϕ, then both ν0 and ν1 satisfy ϕ′. Conversely, if µ is any truth
assignment that satisfies ϕ′ then µ also satisfies ϕ. From this we
can conclude that ϕ is satisfiable if and only if ϕ′ is satisfied by
at least two assignments. We note that given the string ⌜ϕ⌝, the
string ⌜ϕ′⌝ can be computed in polynomial-time, as a function
of the length of ⌜ϕ⌝. So, the function ρ that produces the string
⌜ϕ′⌝ from the string ⌜ϕ⌝ is a polynomial-time, many-one reduction
from SAT to SAT2.

(c) Is SAT2 an NP-complete language?

Solution: Yes, since SAT is NP-complete, then by the previous
part of this question we can conclude that SAT2 is also NP-
complete.

The following question is for students enrolled in MATH 6LT3. Students
in MATH 4LT3 can treat it as a bonus question.

B1 Exercise 3.10.64 from the textbook.

Solution:

1. To see that PRIME-FACTOR is NP, we can show that there is
a verifier for this language. At a high level, such a verifier would
take as input a string of the form ⟨⟨⌜m⌝, ⌜a⌝, ⌜b⌝⟩, y⟩, with m, a,
and b natural numbers and y ∈ Σ∗ and accept it if y = ⌜p⌝ for
some prime number p such that p is a divisor of m and a ≤ p ≤ b.
The set of strings of this form is polynomially bounded, since the
length of y will be less than the length of ⌜m⌝. Checking whether
y has the requisite form can be performed by a polynomial-time
DTMwhose runtime can be bounded by a polynomial in the length
of the input string. Note that as part of this procedure, the fact
that the language PRIMES is PTIME is used. This shows that
PRIME-FACTOR is an NP language.

To see that PRIME-FACTOR is coNP we first note that for any
natural number m > 1, the number of prime divisors of m, count-
ing up to multiplicity, is at most log2(m) ≤ |⌜m⌝| + 1. To see

5

this, suppose that m = p1p2 . . . pk for some prime numbers pi and
k ≥ 1. Then

log2(m) =
k∑

i=1

log2(pi) ≥ k.

Also, since each pi ≤ m, it follows that the string ⟨⌜p1⌝, . . . , ⌜pk⌝⟩
has length that can be bounded by a polynomial in the length of
⌜m⌝.

We can use this to devise a verifier for the complement of PRIME-
FACTOR, thereby establishing that this language is also coNP.
This verifier, on input a string of the form ⟨⟨⌜m⌝, ⌜a⌝, ⌜b⌝⟩, y⟩
checks to see if y encodes a sequence of prime numbers p1, p2, . . . pk
for some k ≥ 1 and then checks to see if their product is equal to
m. If so, then a check is made to see if any of the pi lie between a
and b. If so, the input string is accepted, and it is rejected in all
other cases.

Since the length of ⟨⌜p1⌝, . . . , ⌜pk⌝⟩, an encoding of a prime fac-
torization of m, can be bounded by a polynomial in the length of
⌜m⌝, it follows that the language of this verifier is polynomially
bounded. Furthermore, since primality checking and integer mul-
tiplication can both be carried out in polynomial-time, it follows
that the verifier runs in polynomial-time as well.

2. We first show that i. implies ii. Suppose that PRIME-FACTOR
is PTIME. The following is a high level description of a DTM M
that on input ⌜m⌝ outputs a string ⌜d⌝ where d is a proper divisor
of m, if m is composite, and outputs 0 otherwise:

� Check if m is prime or is equal to 0 or 1. If so, output 0 and
halt.

� Set a = 1 and b = m.

� Iterate the following steps:

– If a = b, then output a and halt.

– Check to see if ⟨⌜m⌝, ⌜a⌝, ⌜a+⌊(b−a)/2⌋⌝⟩ is in PRIME-
FACTOR.

– If so, set b = a+⌊(b−a)/2⌋. If not, set a = a+⌈(b−a)/2⌉.
If m is not prime and is greater than 1, the above algorithm starts
with an interval [a, b] that is guaranteed to contain some (prime)

6

divisor of m. It then, iteratively, cuts this interval in half, and
then checks to see if the lower half contains a prime divisor. If so,
then the interval is reset to be this lower one. If not, it is reset to
be the upper one (which is guaranteed to contain a prime divisor
of m). This process continues until the interval has length 1, i.e.,
when a = b. At this point, it can be concluded that a is a prime
divisor of m.

Since each pass through the loop cuts the interval being examined
in half, then the number of iterations is bounded by log2(m) ≤
|⌜m⌝| + 1. So, the number of times the steps in the loop are run
can be bounded by a polynomial in |⌜m⌝|. Since the runtime of
each step in the loop can also be bounded by a polynomial in
|⌜m⌝| (since are are assuming that PRIME-FACTOR is PTIME),
it follows that the DTM M runs in polynomial-time and computes
the function f .

To show that ii. implies iii., suppose that the function f as de-
scribed in ii. is polynomial-time computable. Let M be a DTM
that does the following on input a string ⌜m⌝ for some natural
number m ≥ 2:

� Initialize LIST to be the string ⟨⌜m⌝⟩, the code of a list of
length 1.

� Iterate the following steps:

– Search through LIST to find the first composite number.

– If no composites are found, output LIST and halt.

– If n is the first composite found in LIST,

* Compute d = f(⌜n⌝). Let q = n/d.

* Replace the entry ⌜n⌝ in LIST by the entries ⌜d⌝ and
⌜q⌝.

We claim that the above DTM computes the function f ′ that on
input ⌜m⌝ outputs a prime decomposition of m, if m is a natural
number greater than 1. To see this, note that at each step, the
product of the numbers coded in the string LIST is equal to m,
and that at the end of the running of M , the entries in LIST are
all codes of prime numbers. So, upon termination, LIST contains
a prime factorization of m. To see that M runs in polynomial-
time, note that the length of LIST cannot exceed |⌜m⌝| + 1, as

7

noted earlier, and that at each step, the length of LIST grows by 1.
So, the main loop of M is run at most |⌜m⌝|+ 1 times. Since the
runtime of each step in the loop can be bounded by a polynomial in
|⌜m⌝| (since f is assumed to be polynomial-time computable, and
primality testing is also polynomial-time computable), it follows
that M is a polynomial-time DTM that computes the function f ′.

To show that iii. implies i., the following is a description of a
polynomial-time DTM that on input ⟨⌜m⌝, ⌜a⌝, ⌜b⌝⟩ does the fol-
lowing:

� Computes f ′(⌜m⌝).

� Searches through the output of this computation to see if the
list contains a prime number that lies between a and b. If so,
accept the input string, and if not reject it.

Since f ′ is assumed to be polynomial-time computable, it follows
that the above DTM runs in polynomial-time and that it correctly
decides if there is a prime divisor of m that lies between a and b.
So, if f ′ is polynomial-time computable, then PRIME-FACTOR
is PTIME.

8

