

MATH 4LT/6LT3 Assignment #6

Due: Monday, 1 December by 11:59pm.

Note: Assignments that are submitted after this deadline, but before 11:59pm on Friday, December 5 will be accepted, without any late penalty.

1. Exercise 3.10.15 from the textbook.

Solution:

(a) Suppose that the languages B and C are PTIME over the same alphabet Σ , and let $A = B \cdot C$. Let M_B and M_C be polynomial-time DTMs whose languages are B and C respectively. Let M_A be the DTM that on input a string $x = x_1x_2 \dots x_n \in \Sigma^*$ does the following:

- Set $i = 0$.
- While $i \leq |x|$,
 - Set $b = x_1x_2 \dots x_i$ and $c = x_{i+1}x_{i+2} \dots x_n$,
 - Run M_B on input b and M_C on input c . If both strings are accepted, then accept x .
 - Set $i = i + 1$.
- Reject x .

By design, $L(M_A) = B \cdot C$. To see that M_A is a polynomial-time DTM, let $p_B(n)$ and $p_C(n)$ be polynomials that bound the runtimes of M_B and M_C respectively. We may assume that both polynomials are increasing. The main loop of the DTM M_A is executed at most $n = |x|$ times, and for each pass through the loop, the DTMs M_B and M_C are run on strings whose length is at most n . So, it will take at most $p_B(n) + p_C(n)$ steps, plus some additional steps to increment the counter i and set up the strings b and c . The number of these additional steps can be bounded by a (linear) polynomial $q(n)$ in n . So the runtime of M_A can be bounded by $n(p_B(n) + p_C(n) + q(n))$, which is a polynomial in n . Thus $B \cdot C$ is PTIME.

(b) Suppose that the languages B and C are NP over the same alphabet Σ , and let $A = B \cdot C$. Let M_B and M_C be polynomial-time NTMs whose languages are B and C respectively. The description of the machine M_A from the previous part serves as a description of a polynomial-time NTM whose language is $B \cdot C$. The only difference is that in this part, the machines M_A and M_B are polynomial-time NTMs. In the step where these machines are run on the strings b and c , if these strings are in B and C respectively, then there will be accepting computations of M_B and M_C on these strings.

The same polynomial bound on the runtime of M_A applies in this part as well. No matter whether the strings b and c are accepted by M_B and M_C , the computations will take at most $p_B(n)$ and $p_C(n)$ steps.

(c) Suppose that B and C are coNP languages over the alphabet Σ . To show that $B \cdot C$ is coNP, we need to show that the complement of $B \cdot C$ is NP. Rather than present a description of a polynomial-time NTM whose language is this complement, we can approach this problem in terms of verifiers. Since B and C are coNP, then their complements have verifiers. We can use them to describe a verifier for the complement of $B \cdot C$ as follows: given a string $x = x_1x_2\dots x_n \in \Sigma^*$ to show that $x \notin B \cdot C$, we need to show that for all $i \leq n$, that either the string $x_1x_2\dots x_i \notin B$ or that $x_{i+1}x_{i+2}\dots x_n \notin C$. So a certificate that can be used to verify that $x \notin B \cdot C$ can consist of a sequence of $n + 1$ certificates that can be used to show, for each $i \leq n$ that either $x_1x_2\dots x_i \notin B$ or that $x_{i+1}x_{i+2}\dots x_n \notin C$. The length of this certificate can be bounded by the product of n and the polynomial bounds associated with the two verifiers for B and C .

As an alternative to this solution, we can describe a polynomial-time NTM whose language is the complement of $B \cdot C$. The description of such an NTM is similar to the description of the DTM in part 1. The only difference is that $M_{\overline{B}}$ and $M_{\overline{C}}$ are polynomial-time NTMs whose languages are \overline{B} and \overline{C} respectively:

- Set $i = 0$.
- While $i \leq |x|$,
 - Set $b = x_1x_2\dots x_i$ and $c = x_{i+1}x_{i+2}\dots x_n$,

- Run $M_{\overline{B}}$ on input b and $M_{\overline{C}}$ on input c . If both strings are rejected, then **reject** x .
- Set $i = i + 1$.
- Accept x .

The same estimate of the runtime for the DTM in part 1 applies to the runtime of this NTM.

2. Exercise 3.10.19 from the textbook.

Solution: This exercise was removed from this assignment.

3. Exercise 3.10.21 from the textbook.

Solution:

1. Clearly \equiv_m^p is reflexive, since for all B , $B \leq_m^p B$, and by definition, it is symmetric. To see that it is transitive, we can use Theorem 3.4.18 from the textbook.
2. Let A be a nontrivial PTIME language and B any other nontrivial language. We claim that $A \leq_m^p B$. To see this, let b and b' be strings with $b \in B$ and $b' \notin B$. Define ρ to be the function such that for $x \in \{0, 1\}^*$, if $x \in A$, then $\rho(x) = b$ and if $x \notin A$, $\rho(x) = b'$. Since A is PTIME, then the function ρ is polynomial-time computable (see Exercise 2.10.31 from Assignment #5 for a similar result). Since ρ is a many-one reduction from A to B , it follows that $A \leq_m^p B$.

If B is a nontrivial PTIME language, then by the above $A \leq_m^p B$ and $B \leq_m^p A$ both hold, showing that $A \equiv_m^p B$. Now, suppose that $A \equiv_m^p B$. Then $B \leq_m^p A$ and so by Theorem 3.4.14, it follows that B is PTIME as well. Thus the set of nontrivial PTIME languages forms an equivalence class of \equiv_m^p .

3. Let A and B be NP-complete languages. Then by definition, $A \leq_m^p B$ and $B \leq_m^p A$ since both languages are also NP. Thus $A \equiv_m^p B$. On the other hand, if C is a language with $A \equiv_m^p C$, then $C \leq_m^p A$, which implies that C is an NP language. Also, $A \leq_m^p C$ implies that C is NP-hard, since the relation \leq_m^p is transitive. This shows that C is also NP-complete and that the set of NP-complete languages forms an equivalence class of \equiv_m^p .

4. If these two equivalence classes are equal then every NP-complete language is also PTIME. Then by Theorem 3.5.5, $\mathcal{NP} = \mathcal{P}$. Also, by that theorem, we conclude that if $\mathcal{NP} = \mathcal{P}$ then each NP-complete language is PTIME, showing that the two equivalence classes are equal.
4. Let SAT_2 be the language $\{\Gamma\phi\mid \phi \text{ is a Boolean formula that has at least two satisfying assignments}\}.$
 - (a) Show that SAT_2 is an NP language.

Solution: The following is a high level description of a polynomial-time NTM M such that $L(M) = SAT_2$. This establishes that SAT_2 is an NP language. Let M be the NTM that on input a string $\Gamma\phi$ for some Boolean formula ϕ does the following:

 - Finds the set S of Boolean variables that appear in ϕ ,
 - guesses two different assignments $\mu : S \rightarrow \{0, 1\}$ and $\nu : S \rightarrow \{0, 1\}$,
 - checks to see if both of them satisfy ϕ . If so, then M accepts the string, and if not, it rejects the string.

The second step is where the nondeterminism enters into the operation of M . The guesses of μ and ν can be carried out in time bounded by a polynomial in the length of $\Gamma\phi$ since the set S has size smaller than this number, and the guesses can be coded as strings of 0's and 1's of length $|S|$.

The other two steps can be carried out in polynomial time as a function of $|\Gamma\phi|$.

A string is accepted by M if and only if there are two distinct assignments that satisfy the formula that the string encodes. Thus $L(M) = SAT_2$.

 - (b) Show that $SAT \leq_m^p SAT_2$.

Solution: Given a Boolean formula ϕ , let x be some Boolean variable that does not occur in ϕ . Let ϕ' be the formula $\phi \wedge (x \vee \bar{x})$. Let ν be a truth assignment for the variables that occur in ϕ and define ν_0 and ν_1 to be truth assignments that extend ν by setting

$\nu_0(x) = 0$ and $\nu_1(x) = 1$. It is not hard to see that if ν satisfies ϕ , then both ν_0 and ν_1 satisfy ϕ' . Conversely, if μ is any truth assignment that satisfies ϕ' then μ also satisfies ϕ . From this we can conclude that ϕ is satisfiable if and only if ϕ' is satisfied by at least two assignments. We note that given the string $\lceil \phi \rceil$, the string $\lceil \phi' \rceil$ can be computed in polynomial-time, as a function of the length of $\lceil \phi \rceil$. So, the function ρ that produces the string $\lceil \phi' \rceil$ from the string $\lceil \phi \rceil$ is a polynomial-time, many-one reduction from SAT to SAT_2 .

(c) Is SAT_2 an NP-complete language?

Solution: Yes, since SAT is NP-complete, then by the previous part of this question we can conclude that SAT_2 is also NP-complete.

The following question is for students enrolled in MATH 6LT3. Students in MATH 4LT3 can treat it as a bonus question.

B1 Exercise 3.10.64 from the textbook.

Solution:

1. To see that PRIME-FACTOR is NP, we can show that there is a verifier for this language. At a high level, such a verifier would take as input a string of the form $\langle \lceil m \rceil, \lceil a \rceil, \lceil b \rceil \rangle, y \rangle$, with m, a , and b natural numbers and $y \in \Sigma^*$ and accept it if $y = \lceil p \rceil$ for some prime number p such that p is a divisor of m and $a \leq p \leq b$. The set of strings of this form is polynomially bounded, since the length of y will be less than the length of $\lceil m \rceil$. Checking whether y has the requisite form can be performed by a polynomial-time DTM whose runtime can be bounded by a polynomial in the length of the input string. Note that as part of this procedure, the fact that the language PRIMES is PTIME is used. This shows that PRIME-FACTOR is an NP language.

To see that PRIME-FACTOR is coNP we first note that for any natural number $m > 1$, the number of prime divisors of m , counting up to multiplicity, is at most $\log_2(m) \leq |\lceil m \rceil| + 1$. To see

this, suppose that $m = p_1 p_2 \dots p_k$ for some prime numbers p_i and $k \geq 1$. Then

$$\log_2(m) = \sum_{i=1}^k \log_2(p_i) \geq k.$$

Also, since each $p_i \leq m$, it follows that the string $\langle \lceil p_1 \rceil, \dots, \lceil p_k \rceil \rangle$ has length that can be bounded by a polynomial in the length of $\lceil m \rceil$.

We can use this to devise a verifier for the complement of PRIME-FACTOR, thereby establishing that this language is also coNP. This verifier, on input a string of the form $\langle \langle \lceil m \rceil, \lceil a \rceil, \lceil b \rceil \rangle, y \rangle$ checks to see if y encodes a sequence of prime numbers p_1, p_2, \dots, p_k for some $k \geq 1$ and then checks to see if their product is equal to m . If so, then a check is made to see if any of the p_i lie between a and b . If so, the input string is accepted, and it is rejected in all other cases.

Since the length of $\langle \lceil p_1 \rceil, \dots, \lceil p_k \rceil \rangle$, an encoding of a prime factorization of m , can be bounded by a polynomial in the length of $\lceil m \rceil$, it follows that the language of this verifier is polynomially bounded. Furthermore, since primality checking and integer multiplication can both be carried out in polynomial-time, it follows that the verifier runs in polynomial-time as well.

2. We first show that i. implies ii. Suppose that PRIME-FACTOR is PTIME. The following is a high level description of a DTM M that on input $\lceil m \rceil$ outputs a string $\lceil d \rceil$ where d is a proper divisor of m , if m is composite, and outputs 0 otherwise:

- Check if m is prime or is equal to 0 or 1. If so, output 0 and halt.
- Set $a = 1$ and $b = m$.
- Iterate the following steps:
 - If $a = b$, then output a and halt.
 - Check to see if $\langle \lceil m \rceil, \lceil a \rceil, \lceil a + \lfloor (b-a)/2 \rfloor \rceil \rangle$ is in PRIME-FACTOR.
 - If so, set $b = a + \lfloor (b-a)/2 \rfloor$. If not, set $a = a + \lceil (b-a)/2 \rceil$.

If m is not prime and is greater than 1, the above algorithm starts with an interval $[a, b]$ that is guaranteed to contain some (prime)

divisor of m . It then, iteratively, cuts this interval in half, and then checks to see if the lower half contains a prime divisor. If so, then the interval is reset to be this lower one. If not, it is reset to be the upper one (which is guaranteed to contain a prime divisor of m). This process continues until the interval has length 1, i.e., when $a = b$. At this point, it can be concluded that a is a prime divisor of m .

Since each pass through the loop cuts the interval being examined in half, then the number of iterations is bounded by $\log_2(m) \leq |\lceil m \rceil| + 1$. So, the number of times the steps in the loop are run can be bounded by a polynomial in $|\lceil m \rceil|$. Since the runtime of each step in the loop can also be bounded by a polynomial in $|\lceil m \rceil|$ (since we are assuming that PRIME-FACTOR is PTIME), it follows that the DTM M runs in polynomial-time and computes the function f .

To show that ii. implies iii., suppose that the function f as described in ii. is polynomial-time computable. Let M be a DTM that does the following on input a string $\lceil m \rceil$ for some natural number $m \geq 2$:

- Initialize LIST to be the string $\langle \lceil m \rceil \rangle$, the code of a list of length 1.
- Iterate the following steps:
 - Search through LIST to find the first composite number.
 - If no composites are found, output LIST and halt.
 - If n is the first composite found in LIST,
 - * Compute $d = f(\lceil n \rceil)$. Let $q = n/d$.
 - * Replace the entry $\lceil n \rceil$ in LIST by the entries $\lceil d \rceil$ and $\lceil q \rceil$.

We claim that the above DTM computes the function f' that on input $\lceil m \rceil$ outputs a prime decomposition of m , if m is a natural number greater than 1. To see this, note that at each step, the product of the numbers coded in the string LIST is equal to m , and that at the end of the running of M , the entries in LIST are all codes of prime numbers. So, upon termination, LIST contains a prime factorization of m . To see that M runs in polynomial-time, note that the length of LIST cannot exceed $|\lceil m \rceil| + 1$, as

noted earlier, and that at each step, the length of LIST grows by 1. So, the main loop of M is run at most $|\ulcorner m \urcorner| + 1$ times. Since the runtime of each step in the loop can be bounded by a polynomial in $|\ulcorner m \urcorner|$ (since f is assumed to be polynomial-time computable, and primality testing is also polynomial-time computable), it follows that M is a polynomial-time DTM that computes the function f' .

To show that iii. implies i., the following is a description of a polynomial-time DTM that on input $\langle \ulcorner m \urcorner, \ulcorner a \urcorner, \ulcorner b \urcorner \rangle$ does the following:

- Computes $f'(\ulcorner m \urcorner)$.
- Searches through the output of this computation to see if the list contains a prime number that lies between a and b . If so, accept the input string, and if not reject it.

Since f' is assumed to be polynomial-time computable, it follows that the above DTM runs in polynomial-time and that it correctly decides if there is a prime divisor of m that lies between a and b . So, if f' is polynomial-time computable, then PRIME-FACTOR is PTIME.