Franczak, B.C., Castura, J.C., Browne, R.P., Findlay, C.J. and McNicholas, P.D. (2016)'Handling missing data in consumer hedonic tests arising from direct scaling: Imputation techniques for consumer hedonic tests', Journal of Sensory Studies 31(6), 514-523. [doi]

Dang, U.J., Browne, R.P. and McNicholas, P.D. (2015), 'Mixtures of multivariate power exponential distributions', Biometrics 71(4), 1081-1089. [doi]

Wong, M.H.T., Holst, C., Astrup, A., Handjieva-Darlenska, T., Jebb, S.A., Kafatos, A., Kunesova, M., Larsen, T.M., Martinez, D.M., Pfeiffer, A.F.H., van Baak, M.A., Saris, W.H.M., McNicholas, P.D. and Mutch, D.M. (2012), 'Caloric restriction induces changes in insulin and body weight measurements that are inversely associated with subsequent weight regain', PLoS ONE 7(8), e42858. [doi]

McNicholas, P.D. (2011), 'On model-based clustering, classification, and discriminant analysis', Journal of the Iranian Statistical Society 10(2), 181-199. [pdf]

McNicholas, P.D. and Murphy, T.B. (2010), 'Model-based clustering of microarray expression data via latent Gaussian mixture models', Bioinformatics 26(21), 2705-2712. [doi] [data]

Pocuca, N., Browne, R.P., and McNicholas, P.D. (2021). mixture: Mixture models for clustering and classification. R package version 2.0.4.