A PRIORI ESTIMATES FOR QUASILINEAR EQUATIONS
RELATED TO THE MONGE-AMPERE EQUATION IN TWO
DIMENSIONS

ERIC T. SAWYER AND RICHARD L. WHEEDEN

ABSTRACT. We prove a priori inequalities for non-subelliptic quasilinear equa-
tions related to the Monge-Ampére equation in two dimensions, for example
equations of the type

Lw = 82w + 0y [k (z,w (z,y)) Oyw] = 0.

1. INTRODUCTION

This paper is a companion to our paper [12]. The a priori estimates for quasi-
linear equations proved here are used in [12] to obtain regularity results for certain
non-subelliptic generalized Monge-Ampére equations in two dimensions. More pre-
cisely, we give two types of a priori estimate here. The first type of estimate in
Subsection 1.1 applies in a rather general setting, where ellipticity may degenerate
to infinite order, and concludes that higher order derivatives of solutions can be
controlled by the first and zero order derivatives. The second type of estimate in
Subsection 1.2 applies to more restrictive equations, where the infinite degeneracy
of ellipticity is balanced by a compensating linearity, and concludes that higher or-
der derivatives can be controlled by the zero order derivatives alone. It is this latter
estimate that finds application in [12]. Extensions of these estimates to higher di-
mensions will appear in a paper [10] in preparation with C. Rios. See also an earlier
preprint [13] with additional detail.

1.1. A priori estimates in terms of Vw. Here we consider the degenerate
quasilinear equation

(1.1) Lw = [02+ Ok (z,w (z,y)) 0] w =0, (z,y) €,

where k (z,y) is smooth (infinitely differentiable) and nonnegative in a domain €,
and where w (z,y) and Q' are such that

(1.2) (z,w(x,y)) € Q forall (z,y) € Y,

and where k is positive for x # 0. This is motivated by the Dirichlet problem for
the Monge-Ampére equation,

u:mcuyy_(uccy)Q = k($7y)a (:E,y)GQ
(13) { u o= ¢(x,y), (v,y) €’
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where k£ and ¢ are smooth and 2 is a bounded convex planar domain with smooth
positively curved boundary 0. Indeed, as is shown in e.g. [12] or [14], the partial
Legendre transformation (s,t) = T (x,y) given by

(1.4) {f _ iy(x,y) :

where u is a convex C'1! solution of (1.3), reduces the question of interior regularity
of solutions to (1.3) to the regularity of solutions of (1.1). Indeed, the function
y =1y (s,t), given by inverting T when k > 0, is then a weak solution of

{02 + 0uk (s,y (s,1)) 0y} y = 0.

Our first main theorem shows that if w is a smooth solution of (1.1) in ', then
all its derivatives are controlled on compact subsets of ' by the size of w and Vw
(of course if  is bounded, then w is a priori bounded by the requirement (1.2)).
Before stating this, it will be convenient to recall the classical inequality

(1.5) IVE (2, 9)| < BVE(2,y),  (2,y) €L,

for a compact subset L of €2, and its more general form,

(16) [VE ()] < C{[V2H|2 + (dist ((2.9),00)F } Vi(oy), (@) e,

if k is merely nonnegative with bounded first and second derivatives on a domain €2
(see e.g. Appendix B in [12]). We will also need some notation. Let P, (£2) denote
the collection of all compact subsets of 2. We will say that a positive function f
defined on P, () is increasing if f (L1) < f(L2) whenever Ly, Ly € P. () with
Ly C L.

Theorem 1.1. Suppose k (z,y) is smooth and nonnegative in a domain 2, and
is positive for x # 0. Let ¢ and s be smooth cutoff functions supported in £’
with > = 1 on the support of (. Then for every multi-index «, there is a posi-
tive function C, (0, L), defined for (o,L) € [0,00) X P.(Q) and increasing in each
variable separately, depending only on Q, €V, Z\mg\aHz (||D5C||OO + ||D5%HOO),

infy(zy)erijz|>cay k and Z\BIS\@IH ||D5k||Lm(L) where

[VE|
o= Q|| ~1a N — > 0,
€ 5( (15[l o I+2(L) s ()
such that
(1.7) (Do < Ca (|2Vw| . L)

for all smooth solutions w of (1.1) in Q' such that (x,w (z,y)) € L for all (z,y) in
the support of .

Note that the right hand side of (1.7) depends implicitly on ||scw||, through the
restriction that (z,w (z,y)) € L when s (z,y) # 0.

Remark 1.1. The important point in the above a priori estimate is that the de-
pendence of the final bound in (1.7) on the function k involves only the size of
derivatives of k on L, the rate of decay of k on L as x — 0, and the constant B
in (1.5), which also depends on L. In particular, these bounds are uniform over
the family of functions {k + 0},_s<, for k satisfying the hypotheses of the theorem.
This observation provides the means of showing that the standard approximation
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procedure for the Monge-Ampére equation converges appropriately. See our com-
panion paper [12] for details.

More generally we consider the quasilinear system for three unknown functions
w, r and z of two variables (z,y) in a plane set ';

02w + Oyk (z,w,r, 2,y) OQyw =

Opr — 2 — YOz w =

(1.8) Oyr — yOyw =

Opz — kOyw =

Oyz + Ozw =

OO O OO

where k (z,y, v, p, q) is smooth and nonnegative in  x R? (Q C R?), and
(@, w (2,y), 7 (2,9) 2 (2,) ,y) € Ax R? for (z,y) € 2.
This system is motivated by the Dirichlet problem for the generalized Monge-

Ampeére equation,

2
(19) { UggUyy — (uzy) = k (xayvuaumauy) » (:E,y) €Q
u = o(x,y), (z,y)e€ I
where k (z,y, v, p,q) is smooth and nonnegative on Q x R3. As before, if k > 0, we

apply the partial Legendre transform associated to a smooth solution u of (1.9).
As shown in [12], the functions

w =y = y(S,t)
Z = Uy (x,y) = Uy (s,y(s,t)) s
o= uzy) = u(sy(st)

where (x,y) = (s,y (s,t)) is the inverse partial Legendre transform, then satisfy the
system (1.8) in the weak sense (where we have rewritten the independent variables s
and ¢ as x and y). The first order equations in (1.8) show that the (z,y) derivatives
of z and r satisfy the same or better size estimates as do those of w, provided the
sup norms of w, z and r are all a priori bounded (of course, only the bound on z
is needed for this purpose). This is indeed the case for solutions arising from the
partial Legendre transform by the a priori estimates for first order derivatives in [1]
(which require only that &k > 0). As a result, we have the following generalization
of Theorem 1.1 with essentially the same proof.

Theorem 1.2. Suppose k (z,y,v,p,q) is smooth and nonnegative in a domain € x
R? and is positive for x # 0. Let ¢ and s be smooth cutoff functions supported in Q/
with > = 1 on the support of (. Then for every multi-index o, there is a real-valued
function Cq (0, L), defined for (o, L) € [0,00) X P (2 x R®) and increasing in each
variable separately, depending only on §, €V, Z\ﬂ\ﬁ\a\-ﬂ (HDﬂCHOO + HDB%HOO),

inf{(lﬂvy’vapa‘ﬁe[’:lw‘Zsa} k and Z|ﬁ\§|a\+2 HDﬁkHLm(L) where

>0,
Le=(L)

[CDwl| < Ca (|2Vw] , L)
for all smooth solutions w, z and r of (1.8) in Q' such that

(z,w(z,y),7 (2, y),2(x,y),y) € L

VK|

k=2

€a =¢ (Q, HkHCIaH?(L) )

such that
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for all (z,y) in the support of ».

1.2. A priori estimates in terms of w. We now consider the question of when
we can improve the bound |[(D%w|| < Cqo (||>Vw|, ,L) in Theorem 1.2 to a
bound ||(D*wl|,, < Co (L) that does not depend on the size |[»Vw||,, of the
gradient of w, but only on the size of ||scw||, through the restriction that (x,w) €
Lfor all (z,y) in the support of ». Such an improvement is necessary for the
application to the generalized Monge-Ampére equation (1.9) in [12]. To achieve
this we impose additional conditions on k (z,y, v, p, ¢) which force it to become less
dependent on the variables y, v, p and g as k goes to zero, namely

(1.10) k| < CEU,  2<i<4,
lkss| < Ck?3,

on compact subsets of  x R?, where k; denotes differentiation with respect to the
4t of the 5 variables x,y, v, p, ¢, and!

3. ;=923
N\ 2 7 )
=1} iz
Remark 1.2. In the classical case where k = k (x,y), (1.10) reduces to the single
condition
(1.11) ka| < CK2.

In the equation for prescribing Gaussian curvature K (z,y), we have
2
k(z,y,v,p.q) =K (z,y9) (L+p°+¢*)",
and elementary computations show that (1.10) again reduces to the single condition

(1.11), i.e. |Ko| < CK3.

We observe that the a priori estimates gy, uy, < C in [6] and [7] for convex
solutions u of (1.9) translate into the following estimates on w under the partial
Legendre transform:

(1.12) 1+ w, (z, y)Q < Cwy (z,y)
k(z,w(@y)wy (v,y) < C

Indeed, reverting to the original variables (s,t), the inequalities follow immediately
from the a priori estimates u,, < C, uyy < C since max{lauiy} < k+ uf,y =

Ug g Uy
_ 1.1
= uyy—c,
1
kE(s,y(s,t)ye(s,t) = k(xy < Uge (2,y) < C,
(5,9(5:1) vt (s,t) ( )uyy(x’y) (z,y)
2
u(E x? uww x?
yS(Sat>2 = y( y)zgu E$ y;SCyt(S,t),
Uyy (T,Y) yy \T» Y
2
Fy (5 0) (5.0 = k(oy) 2TV o @y <
“yy(xvy)

In a paper [10] in preparation with C. Rios, it is shown that the exponent % in (1.10) and
(1.11) can be replaced with the near optimal exponent 1+ ¢, € > 0.
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Note that the fourth inequality also follows by combining the second and third
inequalities. We will heretofore assume that all of our solutions to (1.8) satisfy
(1.12) as well.

Remark 1.3. Consider the classical case k = k (x,y). Of importance here is the
fact that (1.11) k| < Ck? implies the analogue of (1.5) for k (z,w (z,y)):

(L13)  [Viyk (@, w(2,9)] < ki (2,0 (@,9)] + k2 (2,0 (2,9))] [Vw (2, y)]
<O (VE+ki) = CVRlew(e).
independent of Vw, since |Vw| < Ck™! for solutions w to (3.2) satisfying (1.12).

Just as in Remark 1.3 above, the conditions (1.10) on k; are precisely those
which together with (1.12), imply (1.5) for k, namely ‘V(S,t)%’ < C\/Z. Note

that d(4) = 1 is less than d(2) = d(3) = 2 since (3.2) yields |z;| = kw;, <

C and |z| = |ws| < Ck™2 by the a priori estimates (1.12), and thus the term
kg (s,w(s,t),7(s,t),2(s,t),t) |V(5,t)z| will be bounded by \/Z if |k4| < CE. This
observation is important in our application to the prescribed Gaussian curvature
equation. The reason for the special hypothesis on the second derivative k55, and
not the others, is that the strong hypotheses on ks, k3 and k4 actually turn out to
imply that |Vk;| < CVk for 2 < i < 4. Since the very last argument in the paper
requires |k;;| < CVk for 2 < i,j <5, we see that only the bound on kss requires
an additional hypothesis.

Theorem 1.3. Suppose k (z,y,v,p,q) is smooth and nonnegative in a domain € x
R3, is positive for x # 0 and satisfies (1.10). Let ¢ and s be smooth cutoff func-
tions supported in €)' as above. Then for every multi-index «, there is an increasing
real-valued function Cy (L), defined for L € P. (Q x R?), depending only on Q, €,

> is1<talre (IP7C]l o + 1D75]| L) inf a0 paretital>ent B and 312z 1PK] oo 1

where

] + ks | + Jhss] |~ kil
NG 2 i

ca =€ | L [[Ellgrarz) >0,

L= (L)
such that

[CD%w| o, < Ca (L)
for all smooth solutions w, z and r of (1.8) in Q' satisfying (1.12), and such that

(@, w(z,y),r(z,y),z(xy),y) € L
for all (z,y) in the support of .

In [12] an example is given to show that under the hypotheses of Theorem 1.1,
the stronger estimate ||[(D%wl|,, < C4 (L) in the conclusion of Theorem 1.3 may
fail.

Throughout this paper we will use C' to denote a constant that may change
from line to line, but is independent of any significant quantities. We will use
a calligraphic C to denote a function of one or more variables, increasing in each
variable separately, that may also change from line to line, but remains independent
of any significant quantities apart from its variables. We will use nonnegative cutoff
functions adapted to our operator £ as follows. Let R = [— Ry, R1] X [—Ra, Ra] be
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a rectangle centred at the origin in the plane, which we assume lies in ', and let
0;:C;, 00 € C° (=R, R;)) for i = 1,2 satisfy

1. n; equals 1 in a neighbourhood of zero,

2. (; equals 1 in a neighbourhood of zero,

3. 0; = 1 on the supports of both 7 and ¢,

4. 0 does not lie in the support of 6;.

Set
n(z,y) m (2) 0 (y),
C(xay) = Cl (.’E) CQ (y)a
o1 (z,y) = O1(2)(y),
05 (,y) Gy (2) 02 (y) -

Let &, 5 € C° (R) satisfy
1. £ =1 on the support of all four functions 7, (, 0; and g,
2. =1 on the support of €.

Convention: We now introduce a small abuse of notation in order to greatly re-
lieve congestion in subsequent complicated formulas. Many of our quasilinear
equations involve functions of the form (D*k) (z,w (z,y)) for a multiindex «.
We should of course write this as (D%k) o ® where ® (z,y) = (z,w (x,y)), but
will instead write simply Dk when it is clear that the derivative is evaluated
at ® (x,y). For example, using the standard notation that k; denotes partial
differentiation of k (x,y) with respect to z if i = 1, and y if ¢ = 2, we will
write k; and k;; to mean k; (x,w (z,y)) and k;; (z,w (z,y)) respectively. In
these circumstances, the meaning of the formula 0,k = k1 + kow, is

Oy {k (2,0 (2,9))} = ka (2, w (2,y)) + k2 (2,0 (2, ) wy (2, y).

We remark that throughout section 2 on linear equations, k always means

k (z,y), while in section 3 on quasilinear equations, k always means k (x, w (x,y)).
When there is the possibility of confusion, we will write out & (x, y) or k (z, w (z,y))
explicitly.

2. HYPOELLIPTICITY OF LINEAR EQUATIONS

In this section we review the analogous linear theory of hypoelliptic a priori
estimates, which will be used as part of our attack in the nonlinear case. We
denote by || f||, the usual Sobolev space norm given by

~ 2 s
1912 = [ [F@ (1+17) de
R2
One may obtain the hypoellipticity of the linear operator
(2.1) L =092+ 0yk (z,y) 0,
in the case that k € C*° (R), where R is a rectangle [—R1, R1] X [— Rz, Rs], by first
establishing an a priori inequality of the form

(2.2) lnully < C Incull; + CllELull;_. +C ||l €>0,

s—g?
where the cutoff functions 7, £ and s are adapted to the operator £ as above. Note
that the cutoff function 7 is replaced by a larger cutoff £, which is 1 on the support
of n, when Lu is measured in a Sobolev space of smaller order. This is important
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in deducing the general case from the special case s = € by bootstrapping. Note
moreover that (2.2) is weaker than subellipticity: the operator L is subelliptic if
there is € > 0 such that
2
+ ).

Jull? < (' [eow

for all smooth compactly supported u. Since the function k (z,y) = k (z,w (z,))
arising in the quasilinear equation has bounds on its derivatives depending on those
of the solution w, we will restrict attention to the case s =€ =1,

2 2 2 2
Inully < ClinLully + CllELully + Cllzullg,

in order to avoid difficult remainder terms arising from the pseudodifferential cal-
culus when s is not integral.

The basic idea of the proof, following J. Kohn [8], is to estimate Hnu”f by the
Poincaré inequality in the x - variable (which requires no information on the de-
generate function k),

(2.3) I} = 1 Vnullg < CRE 10, (Vau)|[g ,

and then use the k - gradient estimate (compare Corollary 2.3 below),
[ (1corwm +kico,omi?) < =2 [ (cevm)- (cvm)

+4/ |§xV7]u|2+4/ k‘CyVnuf
R R
— T4 II+III,

exploiting the fact that R; is small. In the subelliptic case, where k vanishes
to finite order in z, there are Poincaré inequalities that actually improve the L?
integrability of solutions. These are not available here, and the small constant is
our only improvement. Term [ is handled by writing

['Ca Vﬁ] =V [‘Ca 77] + [‘Cv V} n

and estimating the commutator [£,7n] with the help of even and odd operators
(see Lemma 2.4 below). The commutator [£,V]| = -3, (Vk) 9, can be suitably
estimated using inequality (1.5), |[Vk| < Cvk. In both cases, terms of the form
C HnuHi arise in the estimates, but can be absorbed into the left side of (2.3) since
they are multiplied by R;, which we can take sufficiently small. We remark that
[£, V] has no remainder term while [£, A®] for s not an integer, has a remainder
that requires too much smoothness of k (z,w (z,y)). Term II is supported where
L is better behaved, actually elliptic by hypothesis, and term I can be handled
by exploiting the fact that the weight k& in the norm is the least eigenvalue of the
operator £; this permits us to replace the identity v = V - I v, I} = V- A~!, with
the pointwise inequality

klo? < 0. Lio)* + k|0, o).

We then turn to the LP estimates of J. Moser, and establish a priori inequalities
with an improvement in the integrability of derivatives of the solution, similar to

(2.4) </R‘<Dau5’2da:dy>2 <cp </R‘§Dau5’pdxdy>p,
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for some p < 2. This will be useful in estimating the nonlinearities in Lu in the
quasilinear case. Next, we consider the quasilinear degenerate elliptic equation

(1.1),
Lw = [02 + Oyk (z,w (z,y)) 8] w =0,

where k is smooth and nonnegative on R and w is smooth. We alternately apply

the a priori inequalities (2.3) and (2.4) to obtain that the derivatives of w are

controlled by ||w]|, and [|[Vw]| .

Finally, it might be helpful to keep the following points in mind while reading
the estimates in subsequent sections. Since u is a solution of Lu = 0, the operator
L behaves better than an operator of order 2 when applied to u. However, when
L is commuted with an operator P of order «, then L loses its special status in
[£, P], and the commutator has order only 2 + a — 1. In order to compensate for
this loss, we need to exploit special properties of [£, P]: the inequality (1.5) in case
P is a differential operator of order a = 1, the even-odd technology in case P is
multiplication by a cutoff function with o = 0, and the pseudodifferential calculus

of rough operators in the case P has order & = —1 (see the proof of Lemma 2.10
below).

2.1. The gradient estimate. Let &k be nonnegative and smooth on R (we remind
the reader that throughout this section k = k (x,y)). We begin with the well known
Caccioppoli inequality estimating the energy of the £ - gradient of a function w in
terms of v and Lu. For this it is convenient to introduce the inner product

(v,w),, = viwy + kvaws = viwy + k (x,y) vaws,

as well as the matrix

A= Az,y) = { (1) Z(x,y) }

so that £L =V - AV. The operator L is a sum of “squares” of the two vector fields
0, and \/an, usually called the unit vector fields associated with £. Later it will
be important to observe that the vector fields k;0, are subunit in the sense that

ki| < CVE by (1.5).

Lemma 2.1. Suppose L is as in (2.1) with k nonnegative and smooth. For u €
C* (R), we have the identity

/ (CVu, (Vu),, dedy = 7/ (CLu) (Cu) daxdy — 2/ (uV(, CVuy), dedy,
R R R

and the inequality

(2.5) /R (Ic0aul” + K |COuf* ) dady < —2 /R (CLw) (Cu) dwdy

2
G [ lovul dedy+ 46,12, [ Flosul® dudy.
Proof. Integration by parts yields the identity above, and then using
1
2|(uV{, (V)| < 3 (CVu,(Vu), + 2 (uV{,uV(),

in the identity, and absorbing the term reproduced on the right, yields
[ vueva <2 [ (cow v [ @ve v,
R R R
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Inequality (2.5) now follows from (V(,V(), = (3 + k() < 1€ N2, 03 + ||Cy||io kp3.

Corollary 2.2. Suppose L is as in (2.1) with k nonnegative and smooth. For
u € C>®(R), we have

(2.6) [ (10aul® + k10,60l dady <~ [ (¢Lu) (¢u) dady
R R
1006, 2, [ eyl dady+10|Jc, |, [ ¥losul dsdy
R R
Proof. Use 0,Cu = (9,u + (,u, 0yCu = (Oyu + ,u and (2.5).

2.1.1. Gradients and commutators. In this subsubsection, we extend the k-gradient
estimate for (u in (2.6) to a k-gradient estimate for a deriviative (Onu. It will be
convenient to set

27) A5 = 14l + 19¢0% + Vel + Vel
92l + 197l + 199l -

in order to collect constants in front of the lower order terms in what follows. It is
important to observe that since A > Rl_l, if we wish to show that a certain term
is small by applying the one-dimensional Poincaré inequality in the x-variable in
order to gain a factor of R; (as in (2.3) above), we must ensure that the term to
be shown small is not multiplied by a constant which increases with A.

Corollary 2.3. Suppose L is as in (2.1) with k nonnegative and smooth. Let O
denote either 0, or 0y. For uw € C*(R), we have

(28) [ (102 (Comu) + k1, (comu) ) oy
R
< 4 [ (Gontu) Gomdody — 1 [ (C[2.0n)u) (D) dady
R R
2
+CA? lloyull} + CA2 | VEdoyu| +CA* gull.

Proof. Replace u with dnu in (2.6) and then use LOn = InL + [L£,0n)] and p;0n =
[0i, 1 n + 10, n] ¢; + nOeg; for i =1,2.

The above corollary leads us to consideration of the commutator appearing on
the right side of (2.8),

(2.9) [L,0n] =0[L,n]+ [L,0]n.

The two terms on the right side of (2.9) will be estimated in Lemmas 2.5 and 2.6
below. In order to handle the commutator [£, 7], we will need a standard lemma
regarding even and odd operators (see e.g. [8]). Let 0 denote a partial derivative
of order one, either 9, or dy, so that 9 + 9" = 0.

Lemma 2.4. Let P and Q denote classical pseudodifferential operators such that
P+ P! and Q + Q' have order one less than the order ord (P) and ord (Q) of P
and @ respectively. For u € C°°, we have the following identity in which the sum
of the orders of the operators appearing in the terms on the right is one less than



the sum on the left:
2 [(Pocu) (@cw) = [ (P.01¢w)Qcu) + [ (Peu) (Qu0)cu)+ [ ([P.Q] ¢u) (8¢
+ / (P + P") o¢u) (Q¢u) — / (P*o¢u) ((Q+ Q") Cu).

We can now use inequality (1.5) to handle the right side of (2.8) that involves
the first term 0 [£, 7] in (2.9).

Lemma 2.5. Suppose L is as in (2.1) with k nonnegative, smooth and satisfying
(1.5). Let O denote either 0, or 0y. Foru € C®(R) and 0 < a < 1, we have with
B as in (1.5),

2 2 2
/72 (CO1L,n]u) (COnu) dxdy‘ <Ca (B + 1) <||(9wC877u|0 + HVE@,(&WHJ

A? 2
#Clll + € (At howull+ (4t + 52 ) [VRoyen]))

1
+A* <E + B% + A2> |€ulz + Ca (B* +1) A

/ (nLu) (nu) dfcdy’ :
R
Proof. Computing out [£, 7] we obtain

‘/R(Ca [L,m]u) (COonu)| < 2‘/71@877181”) (COnu)

+2 ‘/R (COkn, Oyu) (COnu)

+ ‘ /R (€O (Nyw + kmyyy + ymy,) w) (CONu)
= I+ II+1I1

To estimate I, we note that since 1, = 1, 0%, we have
- / (COn, Opu) (CONu) -~ = / (0¢*00111,.0105u) (17u)
R R
= /R (00¢%0n,0:01u) (17u) — /72 (0620011, (9z01) w) (17u)

- [ ([210¢%0] n,2s000) ().
R

and so, as we shall show,

(2.10) ] /R (COm,Byu) (COu) <’ /R (COn,0201) (COn0y )

+C (Iull? + A lloyul? + 4° Jlul2)

Indeed, the first term on the right side of (2.10) is the absolute value of the first
term on the right side of the previous display. We also have

’ /R (0¢2 0011, (Dr01) w) (1u) =’ /R (¢*D01n, (Du01) u) (dnu)

< ‘/ (¢*ny (0z01) Doy u) (Onu)| + ‘/ (¢* [001,m, (0z0y)] u) (Onu)
R R

2 2 2
< C (Jlnull} + A* loyull} + A° lull})
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since [0y, 7, (0x01)] has order 0 and norm bounded by A3. Similarly,

‘/R ([01,0¢*8] n,0u01u) (nu)

< O (Il + A* loyull} + 4° lull)

since [gl, (9(28] is the sum of a zero order operator of norm A? and a first order
operator of norm A, upon expanding the commutator. Now apply Lemma 2.4, with
P = (0n, and @ = (I to obtain from (2.10) that

11 < C (lpull} + A" lloyull} + 4% gul?)

We remark that since P+ P* = (dn, —n,0¢ has order 0 (and similarly for Q +Q"),
all the terms on the right side of Lemma 2.4 have less total order than the left side,
and after much computation we have the desired result. Note also the tradeoff of
order for powers of A in Lemma 2.4 - if a derivative hits a cutoff function, the order
is reduced but an additional factor of A arises in the norm.

For 11 we write

7 = 2‘ /R (VEn, oyu) (VRO 0mu)

Cé H\/Enyayqu + Ca H\/Eag“Q(?nqu .

IA

We may assume g, = 1 on the support of 7, if we assume that ¢; = 1 on the
support of 7y, since g5 = ¢y () 02 (y) and 1, =, () 75 (y).

Cautionary Note: We initially defined the cutoff functions ¢, and n, to be
independent for i = 1,2. We caution the reader that while we will now
assume that ¢; = 1 on the support of 1, in later sections we will want to
choose just the opposite, namely 7, = 1 on the support of ¢,. This will not
be circular, as in the iterations of our inequalities, we replace our existing
complement of cutoff functions with a completely new collection, supported
in a much larger set and often without notice.

So with g, =1 on the support of 7, we have

[VEnon], < 42 [Viaen

b

and O
(2.11) H\/Ea@anuuz < cng/Eaganqu+OH\/E(ag)anqu
< cnaIganung+CH\/anganqu

+CA? | 9,mul3 + CA? HVMW“HZ

upon considering the cases 0 = J, and 0 = 0, separately, throwing away the Vk
when 0 = d,. Thus we obtain

11 < Ca|d.Conul? + Ca H@%@WHE
2

+CaA? ||8wnu\|g + CaA? H\/Ec(?ynqu + 0%2 H\/Ec(?y@uHO .
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We now apply Corollary 2.2 to estimate the middle line above by

(2.12) CaA? H@InuHé + CaA? H\/annqu

< CaA? /R(nﬁu) (nu)

+ CaAt |€ull}.

Finally, for 111, we have

11| < ‘ /R (COMp0) (COM) +‘ /R (COkn, ) (COmu)| + /R (COkyn, ) (COpu)|

Using 1, = 1,01, We see that the first of the three terms is dominated by
2 2 2
C (llnull} + A* loyullf + A° lgullf)

Using 7, = 1,,0, and our hypothesis (1.5), we see that in the case 0 = 0y, the
second term is dominated by

C (Jlmull} + A* kD, 00ully + A* (A2 + B2) |lcully) -

In the case 0 = 0., we have

' /R (CO 1) (D)

= ‘/R (kny,u) (02¢0nu)
C
< =AY |gullg + Ca [[9:¢*dmull

C
< —Ajgull§ + Ca |9:¢mully + Cad® | Onulls

and we can apply (2.12) to the last term here. Finally, by using (2.11) and our
hypothesis (1.5), the third term satisfies

‘/R (Cakﬂ]yu) (Conu) /R (nyu) (kga@anu)

<S4 cul? + CaB? H@aﬁanuHQ
(6] 0

C 2
< =A% |eulls + B2Cal|0ucomull} + BACa || VR, Conul|

+CaA’B? H@xnuﬂg + CaA’B? H\/Eﬁynqu .

Now use (2.12) on the final two terms on the right side to complete the proof of
Lemma 2.5.

We can now use inequality (1.5) to handle the right side of (2.8) that involves
the second term [£, 0] n in (2.9).

Lemma 2.6. Suppose L is as in (2.1) with k nonnegative, smooth and satisfying
(1.5). Let O denote either 0, or 0y. Foruw e C*(R) and 0 < o < 1, we have

[ €ieom) omydsa| < Ol + 0B [ kiocon® dady
R R

+CaA?B?

/ (nLu) (nu) dwdy’ + CaA*B? ||§u\|g .
R
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Proof. Use [L,0] = 0y [k, 0] 0, = —0, (0k) 0, along with (1.5) and (2.12).
We can now replace the right side of (2.8) with only error terms and terms
involving Lu.

Corollary 2.7. Suppose L is as in (2.1) with k nonnegative, smooth and satisfying
(1.5). Let O denote either 0, or 0y. For uw € C* (R), we have

| (10: @om) P+ k19, (como)l*) dady

< —4/ (COnLu) (Conu) dedy + C A*
R

[ ) (o) o

R

+C A ||Q1u||§ + CA* (A” + B?) / k \(9y92u|2 dxdy 4+ C A* / k|oqu)” dady
R R

O (14 B) lnully + CA* (4% + B?) |igullg

Proof. We plug the identity [£,0n] = 9 [L,n]+ [L£, d] n into the second term on the
right side of Corollary 2.3,

[ (10: (comu)P + k1, (comu) )
R
< 4 [ (contu) com) —4 | (¢1&.0nw) (COm)
R R
2
+CA? |loyull} + €42 ||VEdoyu| +CA* lgullf

and then estimate the resulting terms with Lemma 2.5 for 0 < a < 1 to be chosen,

\ [ ote com

2
< Ca(B*+1) <||8IC377UJ||3 + H\/E(%(@nu“() +C ||nulf?
4 2 s, A 2 ol 2 g 2
+C (At flogull} + (4% + =) (||VRouenu| ) +a% (- + B2+ 42) gul;

+CaA? (B? +1) ’ /R (nLu) (nu)

)

and Lemma 2.6,

] [ 1010 (com

< 0L nul? + CB% / k19, Comul?
« R

+CaA%B? + CaA'B?||cull}.

/R () ()

Then choose a = m so that the term

Ca (1+ B?) H3x§87]u||(2)+00z (1+B2)/ k |8, ¢omul?
R

can be absorbed into the left side.
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2.2. The Moser Iteration. In this section we establish local LP improvement
for solutions u of Lu = 0, where £ = 92 + 9,k (x,y) d,. Whenever we use 3 to
denote a positive real number, we assume that 8 = 2 is rational with n odd, so

that expressions such as u (z)” make sense. Let R = [—Ry, Ry] x [~Ra, Ry be a
rectangle in the plane, and let 1, (, 0, &, »c be as in section 1. Let k£ be nonnegative
and smooth in a neighbourhood of R.

2.2.1. The gradient estimate for powers. We begin by generalizing Lemma 2.1 to
. 1 0
powers of u as in [9]. Recall that (v, w), = viw; + kvows and A = [ 0 k() } .

Lemma 2.8. Suppose L is as in (2.1) with k nonnegative and smooth. For u €
C*(R) and 3 > %, we have

/R (¢Vu’,¢VuP), dedy =

/82
28-1

(CLu) (Cuzﬂ_l) dxdy — / <u5V§, CVu5>k dxdy,
R R

2
28— 1

and

/72 (|C81u5|2 +k |Cayuﬂ}2> dxdy < 25 ’/ Cﬁu Cu2ﬁ ) dl’dy‘
9 2
+ (2/B€1> Hga;Hio/R‘Qluﬂ‘dedy—l— <25 > ||§ H /Rk’QQUﬁIdedy.

Proof. For 3 > 1, integration by parts yields the identity above, and for % <p <1,
an additional elementary limiting argument is needed, which we omit. Now use the
inequality 2ab < aa® + ébQ to obtain

20

26 —1
2|(u’V¢, (VU | < b ¢V’ (VuP), + T (WVEGUINE),
and combining this with (V(,V(), = (& + k() < 1€ 112 P2 + [ICal12 kp? as in
Lemma 2.1, we obtain the desired inequality.

2.2.2. The subunit estimate. While the integral fR |Qlu5|2 in Lemma 2.8 can be

handled since it is supported where L is elliptic, the integral fR k ’QQUB ’2 requires
further work. We will use the following fractional integral result repeatedly in this
effort.

Proposition 2.9. Suppose T is a pseudodifferential operator of order a € (—2,0].
Then

> -+

)

ICTE N pagrey < CIEF gy

[\J )

SR
Q=

provided 1 < p < q < 00, and q < 2+a in the case p = 1. If T is in addition a
Fourier multiplier operator, then the cutoff function & can be omitted.

We do not need (1.5), the inequality |V&| < BV, for the next result.
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Lemma 2.10. Suppose L is as in (2.1) with k nonnegative and smooth. Then
for each v > 0, there is p < 2 such that for all u € CX(R) and all § > 1,

(fR k \gzuﬂf d:zrdy) ® is dominated by
: 5 \4
+0(55)

A2 P\ 7
4, (\/ﬁ(ﬁ—lHﬁﬂﬂklcu+A||%ky||oo+A2> (L)

cﬁ) /R (00"~ Lu) (€11 00u”)

/R (Vazud—'cu) (@U%)]

where I is a Fourier multiplier operator of order —1.

Proof. Denote by A® the multiplier operator with symbol (1 + ||2) *. We use the
identity,

Id=(I-V*)A?=A"7-V-(VA?),

to write

/k|g2u5|2 = /k\&buﬂfﬁo/ k|§A_292uﬁ|2+C/ k|£V~(VA_2) 92uﬂ|2
R R R R

C/ |£A_2gguﬂ|2+0/ |§8I (1192u5)|2+0/ k|£8y (1192u5)|2
R R R

where I} = 9,A2 in the second integral on the right, and I; = ,A~2 in the third
integral. Both operators I; have order —1, and this small abuse of notation should
cause no problems. Now the first term on the right satisfies

Jotenren? <o ([ jowr)
R R

for any 1 < p < 2, by Proposition 2.9 on fractional integration (A~2 has order
for all @ > —2). By Lemma 2.1, and with £ as in (2.1), the last two terms on the
right are dominated by

/ (fﬁflgguﬂ) (§Ilgguﬁ)‘+C’A2/ |%I192u5|2
R R

IN

(2.13) c

upon replacing u by Ip,u” in (2.5). Strictly speaking, we should replace I; in
(2.13) by 8,A~2, and then by d,A~2, and finally add the two expressions. Now the
last term in (2.13) satisfies

8|2 B|P ’
[nest <5 ) )

for any 1 < p < 2, by Proposition 2.9 again. It remains to estimate the first term
on the right side of (2.13) given by

[ (etnon®) (€how?) = [ (ehoson®) (€how?) + [ (€1 Dele?) (€how?)
R R R
Noting that

L0 = (024 0,k0,) u = Bu’ Lu+ B (8~ 1) w2 (10, + k|9,ul’)
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we have

/ (£L110,u") (E1105u") ﬁ/ ¢l 0,u’ " Lu) (E110,u”)
R

+6(8-1) /R (¢hiesu”2 (10suf® + k10,0l ) (ehre20”) + /R (€12, o] u”) (€10
=I+J+K.
Now the term |Z |% is the first term in the conclusion of the lemma. For the
second term, we write [; = OA™2 = (8A_%> (A") = Il Il where 0 is either 9,
or 0, (we continue to abuse notation by writing I 1 for the three different operators
O, A3, OyA™ 2 and A~2, each of order —3). We then obtain

g1 = 8G=1) [ (nenen (0 + ko)) (1en”)
co6-1) [ |nenen? (0l + ko) +co6-1) [

cs@-0{ [ Jo (Iaxu2+k’|3yu2)’}2+cﬁ(ﬂ1){/R\@2uﬁ}%}%,

by Proposition 2.9 with first T' = I%§2I1, a= —%, p=1and ¢ =2, and then with
T= Ié, a= —%, p= % and ¢ = 2. Using Lemma 2.8 with % in place of 3 in the
case 3 > 1 (J =0 when 8 = 1), the first integral above satisfies

/‘Quﬁ 2(|8U\ +k|8y\ ﬁ / (’\/_émz +k}\/_auz
<Oz /R(\/Q—ﬂﬁ )(\/_w)‘—&-CAQ _1)2/71\51/3].

=B
<05 | [ (vemd-ten) (ﬁ“"‘)‘ e ﬁ) o _1“/ )

So altogether, we have
where the first term here leads to (by taking the square root) the second term in
the conclusion of the lemma.

Finally, to estimate the third term /C, we write I; = OA=2 = (8/\“‘2) (A~) =
I oI, for any 0 < a < 1 to obtain

IN

2
I%QQUB‘

IN

2 2
Kl =| [ (1o (£, 1i0s) ) (Iagguﬁ)‘ Yo LT AT Ry
R R R
As before,
2
2 P
/ ’IQQ2UB’ S Cp </ ’Q2ug’p>
R R

for % = % — 2. We now write (£, I105) = [£,11] 05 + I1 [£, 03] and consider the two
terms

(2.14) / Lo [, 1] 92u6|2 and / |L_a&1h [c,gmﬁf
R R
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separately.
To estimate the first term in (2.14), we note that

(£, 1] = 0y [k, 1] 0y = 0y (k110 — 11kD,) = 0y (k (110y) — (110y) k + Iiky) = 0y ([k, [10,] + I1ky) .

Following [11], we denote by O7" the collection of rough pseudodifferential operators
mapping Ho,/wP, to H;P for 1 < p < oo and s € I, where H*? denotes the
Sobolev space of functions whose fractional derivatives up to order s lie in LP.
Now for 0 < g < 1 and € > 0 we have ¢ [k, [10,] € O(i“m) for pu + ¢ < v with
norm |[>k||c. (gey by Theorem 4 in [11]. Since I;_o&0, has order «, and since

528y = £0y€ — £, €, we thus have

L_o&%0, [k, 1,0,] € O?:;jra)sfa), for0<a<min{u,e}, p+e<v.
Thus I1- &9y [k, 110,) maps L2, .0; = HOEL .y to HlY P provided pu — a €

(—e+a,e —a), i.e. pu € (2a—¢,¢), which is in turn embedded in L? by the

loc

Sobolev embedding theorem with % = p—ll — £5=. Note that given v > 0, we can

first choose ¢ and « such that 0 < § < a < e < %, and then choose u such that

a < p < g, in order that all of the above parameter restrictions hold. So,

/ |L_a&? (L, 1] QQuﬁf < C / |I1-a&%0y [k, 1,0, 92uﬂ|2+c / |11_a§2ay11k292uﬁ|2
R R R

2 2
) » P1 9 p P2
C||5<k|| ¢ (/R |Q2Uﬁ| 1) + Cloky |5 (/R |92uﬁ| 2) ’

1 _ 1  p—« 1_ 1 _ l1-«o sps
for 5 = - Lz and 5 = il by Proposition 2.9.

To estimate the second term in (2.14), we observe that if T is defined by T =
I ([£, 05]), then by expanding out [L, g,],

T=2 (11 (02), 0z + L1k (o), (’)y> +1I ((02)m +k(02)yy + Ky (92)y> ’

and then T is a bounded operator on L} = with norm at most CA (A + ||s>ck2| . )for
all 1 < p < oo, and satisfies T'= T¢. Thus we have

/ LT < C (/ |T§u’8|p2>5
R R

ca? (a4 lmal) ([ fea)"
R
1 e

where % =, -5 as above. This completes the proof of Lemma 2.10 if we take

p= max{plup?u %}

IN

/ |- 11 (L, 0] u’8|2
R

IN

3. A NONLINEAR DEGENERATE ELLIPTIC EQUATION

In this section we begin the proof of the a priori estimates (1.7) for smooth
solutions of the quasilinear equation (1.1), which we recall here as
(3.1) ICD%w][o < Ca (VW] , L),

where C, (+,-) is finite and increasing on [0,00) X P, (£2), and w is smooth and
satisfies

(3.2) Lw = [8§ + Oyk (z,w (2,9)) 9y w =10, (x,y) € X,
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and also
(3.3) (z,w(x,y)) € L for all (x,y) € support ().

Throughout this section, w will be a smooth solution of (3.2) satisfying (3.3), and
for convenience, we will say that an expression involving derivatives of w is under
control if it is dominated by the right side of (3.1). Similarly we will make state-
ments to the effect that some derivative D®w is in a Banach space X with control,
meaning that ||(D%wl| , is under control for an appropriate cutoff function (.

We attack the problem by differentiating (3.2), to obtain the equations

0 = »Cwm"'_ay [{kl (:c,w(:c,y))+k2 (x7w(xay>>w$}wy]a
0 = Lwy,+0, [kg (z,w (x,y)) wz] ,
or
(3.4) Lw, = —0ykiw, — Oykawzwy,
Lw, = —Gykng,

for w, and w,. Note that we use 0, as an operator acting on everything to its
right, unless parentheses indicate otherwise. Recall also Convention 1.2 concerning
the expressions k, k; etc. in this and subsequent sections: k denotes k (z,w (z,y))
and k; denotes k; (x,w (x,y)) etc., except in section 5 where & has more variables
and the convention is modified accordingly.

We will apply Corollary 2.7 in the section on gradient estimates to the compo-
nents of Vw, and using the facts that both w and Vw are bounded with control,
we will show that in fact w € H2, i.e., V?w € L? with control. Note that this
does not increase the index of smoothness of w that is under control, but only re-
verses the Sobolev embedding theorem H? (RQ) “ C 7 Lipy (RQ). Recall that the
index of smoothness of an n-dimensional LP Sobolev space H, (R") is the quan-
tity s — %. Since the equations (3.4) are not homogeneous, we must handle with
care the terms arising from LVw in applying Corollary 2.7. We then apply the
results of the section on Moser iteration to obtain that VZw € L7 with control for
q large depending on how small R; is chosen, again handling with care the terms
arising from £LVw. Note that the Moser iteration actually increases the index of

smoothness by 2 (% — %) =1- %.

At this point we repeat the above process with V2w in place of Vw. We apply
Corollary 2.7 in the section on gradient estimates to the components of VZw, and
using the facts that Vw is bounded and V?w € L7 with control, we show that
in fact w € H3, i.e., V3w € L? with control. This time we actually increase the
index of smoothness another 2, for a total of 1. From now on, it turns out that
due to the nature of the quasilinear systems satisfied by higher order gradients of
w, which become progressively less nonlinear, we can continue to alternately apply
the reverse Sobolev embedding and the Moser iteration to increase the index of
smoothness of w that is under control by 1 with each repetition. Thus we obtain
the a priori estimates (3.1).

3.1. Reverse Sobolev embedding. Here we show that if Vw € L with control,
and satisfies the system (3.4), then V2w € L? with control. The following lemmas
will be crucial in handling the nonhomogeneous terms in (3.4).
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Lemma 3.1. Suppose w is a smooth solution of (3.2) in a compact rectangle R in
Y, where k (x,y) is smooth and nonnegative in Q, so that uw = w, and v = w, are
smooth solutions in R of the nonlinear system (3.4). Then we have

/ (|8w(u|2 +k |8y§u\2) dxdy + / (|8wﬁv\2 +k |8yCv|2> dxdy
R R
< A (Jlgulz: + llgvlze ) + OB (llgullze + gvla)
Alternatively, we have a bound in terms of at most ||Eu|| ;> and ||€v]| o ;
/ (19:cul® + k10,Cul?) dxdy+/ (192C0? + [9,Cof?) ddy
R R

< A2 (Jleullia + llgvlz) + OB (llgul s ol + ligvle)

Proof. From Corollary 2.2, applied with k (x,w (x,y)) in place of k (z,y) there, we
have

(3.5) /R(|8x§u\2+k|8yﬁu|2>—&—/R(|(9w(v|2—|—k|8ygv|2)
<4 [ (¢t ()~ 4 [ (¢L0) (Go) + O ull + O .
R R

For the integral involving Lv, we have by (3.4)

- [ = [ (@)= = [ (%) (ad,ct)
= - [ %) tacarco) - [ (0?) (kat,00)
= - /R (¢0®) (k20,Cv) — /R (¢v°) (kaGy0) -

The first term on the right is dominated by
C
B2Ce [ kIO, + €l
R 3

while the second term is at most C'B? H§v||i4 + C A2 ||£v\|22 Choosing € = 555z,

we can absorb the term B?Ce [ k |8y§v\2 into the left side of (3.5). The same
argument yields the appropriate estimate for

- /R (CLu) (Cu) = /R (COykrv) (Cu) + /R (COykauv) (Cu) -

To obtain the alternate bound, we estimate the last integral above by
[ @y o = |- [ () (kadyc0) = [ (hacun) (¢,)
R R R

C
S vl lcule + B2 [ koGl

+COA? ||€u| 72 + CB? ||&ul 7. lI€v] T

and similarly for the other integral. Choosing € = Tle again completes the proof
of the lemma.

Up to this point we have been keeping precise track of all the constants. This
will prove increasingly difficult from now on, and we will instead only keep close

IN
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track of the critical constants - typically those which are involved in subsequent
absorptions.

Lemma 3.2. Suppose w is a smooth solution of (3.2) in R, where k (z,y) is non-
negative and smooth in Q and satisfies (1.5) so that v = w, and v = w, are smooth
solutions in R of the nonlinear system (3.4). Then we have with 0 = 0, or 0 = 0y,

/ (102 (Comu)* + k19, (comu)*) dady + / (102 (Comv)* + k18, (o) ) dady
R R

< (B, |xVull) (Il +Invl) +C (A, B, |5Vwl.,).

where the functions C(-,+) and C(-,+,-) are finite and increasing in each variable
separately.

Proof. We wish to apply Corollary 2.7 with k (x,y) replaced by k = k (z,w (z,y)).
Now by (1.5), we have

(3.6) |VE| = |(k1 + kawg, kowy)| < |ki| + [k Vw| < C’B\/E(l + [Vuwl),

and thus we can apply Corollary 2.7 if we replace B by B = CB (1 + [|2eVw|| )-
We obtain

80 [ (10 (Coml® + k10, €oml?) + [ (1o (coml? + k1o, com)?)
<4 [ (conu) Gom) =4 [ (contw) (com)

[ wew o) [ oy o)

R R

+oA {llevull} + llesoll}}
+C A? (A2 + BQ) {/ |9y 0yul” +/ k |5yé)2v|2}
R R
L A2 {/ k |892u|2 +/ k |892v|2} +C (1 =+ B2) {Hn“”i + HUUH?}
R R

+oat (at+ 52) {ligully + l€vl3}
for @ = 0, or 0,. We first estimate

+CA? + CA?

- [ contorcomy = [ (comdnpa) com) = [ () (baduniciom)
R R
= [ () o¢kad,0m0) + [ (%) ([ka0,.106%] o)
R R

- - /R (COnv?) (ka0,CONv) + / (0%) ([k20y,10¢%] D)

R
+ /R (¢omv?) (kag, 0mv)
= [+ II+1II.

For term I we use

C -
1] < €/72|§877v2|2+B25/Rk\3y(8nv|2,
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since |ko| < BvVk by (1.5), and absorb the second term BZe Jr k \8yC6nU|2 into

the left side of (3.7) upon choosing ¢ = 2—;32. As for the first term, since dnv? =

C’/ \vanv|2+C/ |(377)v22
R R

O llv)|}w llvll} + CA? ||€v]7a -

200nv — (9n) v, we have
[l
R

Now use ||§v||i4 < |R| va”ioo <C ||§v||ioc and multiply the resulting terms above

IN

A

by % = 2C'B? to obtain an expression which is bounded by the right side of the
conclusion of Lemma 3.2.
For term 111, we use

|[I1I| = ‘/R (QGUUQ) (kggyamz)

< c/ onv?|” + CAQEQ/ ke |0nv)? .
R R
The first term is handled by the previous inequality, and the second is at most

O (42B) (42 + B o]} ) ol

by Lemma 3.1.
For term 11,
[k20y, n0C?] = kan, 0¢% + kand2¢¢, — n¢* (Ok2) 0,
implies
\H| < ‘/ ) (k2n, 0¢%0mv) ‘/ (kand2¢¢, 0mv) ‘/ ¢* (Ok2) 9y0mv)| .
Now the first of the terms in (3.8) satisfies

IN

‘ / ) (kan, COCOY) ' [ ) (kan, (06) come)
BQCE/RM@C&W\ —&—?/R’nyv
+82 [ ka0 +C [ jomf?

‘/ ) (k2n,0¢%0nv)

IN

IN

. C .
B2Ce [ kloconl? + S A% ol + CASB o]+ C ol

and the first term on the right above can be absorbed into the left side of (3.7) with

£€=135 32 The second term in (3.8) can be handled in exactly the same way. The
third term in (3.8) is handled as follows:
‘ / 8k2) 0, 8771))
‘/ 77§ (ko1 + koou) O 3967711 ‘/ 77§2 (koov) 8y3y7]v)

C'/ }8yk21C nv2| +C/ }8yk22u§“ nv2| +C/ }8yk220§277v2|2+0||77v|ﬁ.
R R R
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The first three integrals on the right are now easily dominated by

Clleval}~ (I€Vulle + A% €Vl + lnulf + o]l

using
O kgonur? = (3§2k22) nuv? + koo [0237]u + u2v0nv — 2uv2877]
and
0C%kay = 2¢(9C) kaa + (*Okao
_ 2¢C koo + ¢ (ko21 + kogou), 0 =0,
a { 2¢C ka2 + koo, =20, ’

along with similar formulas for the terms involving k2102 and ksgv3. This completes
the estimates for the second term on the right side of (3.7). Similar arguments
handle the first term on the right side of (3.7).

Next, we turn to estimating | [, (nLu) (nu)| + | [ (n£v) (yv)|. For this we have

‘/R(nﬁv) | = ‘/R(nakaUQ) )| = ‘/R(nv?) (k23y71v)*/72(k27777yv3)

i /R k1ol + C /R n?|” + CAIR ¢l .

and the first term on the right is controlled by Lemma 3.1. A similar argument
applies to | [ (nLu) (nu)].

Finally, we turn to the remaining terms in (3.7) that arose from the application
of Corollary 2.7. The terms

/k|(’)yg2u|2+/ k\8y92v\2 and / k\892u|2+/ k:\@g2v|2
R R R R

are handled by Lemma 3.1, while the terms [ o,ul: +||o; v’ are handled by elliptic
theory (since g, is supported where k > 0) as given in the Proposition below.
The penultimate term in (3.7) is included in the first term on the right side of
the conclusion, while the final term in (3.7) is included in the second term. This
completes the proof of the lemma.

IN

Proposition 3.3. Suppose k > ¢ > 0 is smooth and (,& are smooth cutoff func-
tions with & = 1 on the support of (. For each multiindex «, there is a finite
increasing function Cy, (+) on [0,00), such that

[CD%w| e < Ca (€]l o + €V 1),

for all smooth solutions w of

(3.9) 02w + Oyk (z,w) 9w = 0.

Proof. We write (3.9) in nondivergence form as follows:

(3.10) Pow +k (z,w) Ojw = —ks (z,w) (B,w)* = .
>

Then k& (z,w) and f are bounded functions with k (x,w)
Theorem 12.4 in [5], we conclude that for some 6§ > 0,

¢ > 0, and so by

fcwlenee <€ (Nwl e +

) < (||gw\|m + H&Vw\lioo) :
LOC
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Now return to (3.10) and note that f € C° and k (v,w) € CY*° with control. By
the Schauder estimates, Theorem 6.2 in [5], we obtain

[Cwllgave < Co (lwll L, 1EVW| poe)

and so also k (z,w) € C?*® and f € C'*° with control. We can now differentiate
(3.10) with respect to 0 and apply Schauder theory again to obtain

H<w||c3+6 <Cs (H&U”LOC ) vaw”Lw) .

Iterating this process yields the conclusion of the proposition.
Theorem 3.4. Suppose w is a smooth solution of (1.1),
02w + Oyk (z,w (z,y)) Oyw = 0

in R, where k is nonnegative, smooth and satisfies (1.5). Then w € H7 . with
control, i.e. w,V*w € Ll2Oc with control.

Proof. The Poincaré inequality (2.3) and Lemma 3.2 yield with v = d,w and v =
Oyw,

Il + Inell} < CR3 /R (102 (€Tm)* + 10, (CT0)*)

< CR} (1+ (B2 +1) llgVelll, ) (Imull} + C lnol?) + CRIC (A, B, |€Vull,)

_1
2

Choosing R; < {QC (1 + (B*+1) ||§Vw||io>} (note that A is not involved

here) permits the first term on the right above to be absorbed into the left hand
side, and this completes the proof of the theorem.

3.2. An L? improvement. In this subsection, we improve the index of smoothness
of w that is under control by showing that V2w € L9 with control for large q > 2.
Let us first compute the equations satisfied by the L? functions VZw. Differentiating
(3.4), and continuing to set v = w, and v = w,, yields
+0y {(k11 + k12u) v + k1vg + (k12 + kaow) wv + kougv + kouvy }

= Luy + 0y {kavuy} + 0y {(k120) v + k1vy + (k22v) uv + kouyv + kouvy }

= Lu, + 8y {(k‘l + k’gu) Uy} + 8y {(k’lg + k‘ggu) v? + ICQQUUJ;}

= Luy + 9y {kovvy} + 0y {(ka2v) v* + ko200, }

or

o e = af Mg )
—Luy = 9y {klvy + k2 (uvy + 2uyv) + k20 + kQ?uv2}
—Lv, = Oy {kivy + ko (uvy + 2vv,) + ki2v® + koouv®}
—Lv, = 0, {3k2m}y + kggv?’} .

The key feature of this system is that the right hand side is a combination of terms
involving either the operator d,k; = (k;d,)", the transpose of the subunit vector
field k;0,, or the identity operator acting on an expression which is affine in the
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components of Vu and Vv with bounded coefficients. We rewrite this system so as
to exploit this feature as follows:
(3.12) —Lu, = (kzlay)t (uy +vz) + (kgay)t (utty + ugv + uvy)

I k11202 + 2k120uv? + kagou?v? + kiqvy
+2k12 (uyv + uvy) + koo (2uuyv + UQ’Uy)

—Luy, = (k10y) vy + (k2d,)" (uv, + 2u,v)

+ { k1220® + kaopuv® + k12200, + koo (uyv? + 2uvvy) }
—Lv, = (k10y) vy + (k20y)" (wvy + 2vv,)

+ {k1220” + kosouv® + k12200, + koo (uyv® + 2uvvy) }
—Lv, = (kgﬁy)t 3vvy + {k222v4 + k223v2vy} ,

where we recall that the derivatives of k are evaluated at (z,w (z,y)). The following
lemma is crucial for estimating the nonlinear terms above. We recall that limiting
arguments show that expressions like 8yu5 = ﬁug_luyy are square integrable for
B> % (and not just 8 > 1).

Lemma 3.5. Suppose that u,u,, vz, vy give a smooth solution of the system (3.11)
in R with k =k (z,w (z,y)). Then for 8> 3, the k-gradient integrals

(3.13) /R (Icowu” + k[coull”) + /R (Icowu)” + & [coyui|”)

+ [ (oo + klcoedl®) + [ (lcowo® + klco,0f )
R R
are dominated by

1
< G (ﬁ,ﬂ—%,B,HwaHOO)/R{}gug|2+|Cufy3|2+|§vf|2+}g“v5}2}

2
w0 () 4 [ o+l ot + i)

23— 1
1
+0r (8 A8 10l ) [ {lesd P+ el + ool + lesi)
B3 R
1
+¢0 (5 77 levul.).
B-3

where C1, Co and C3 are finite and increasing in each variable separately.

A crucial point is that C; in the above lemma does not depend on A, so that in
applying the one dimensional Poincaré inequality in the next theorem, the product
R32C; can be made less than one for R, sufficiently small. This would be impossible
if A% were present since A > Ry" - recall (2.7).

Proof. We see from Lemma 2.8 applied to the four functions s, uy, vz, vy, that it
suffices to prove that

(3.14) ' [ ctun (@] + j [ (et @)

+' | (ceun) (o) +‘ G
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is dominated by
Caf32/ k{Jcopul ]+ [couf|” + [co,of]” + [coop[” |
R
1 1 2 2 2 2
+C (ﬁ,@,B, ||SVw||oo,5)/R{\<u§} feud]* + oo P+ oo}

1
s (b ABlevoly) [k {ledl” + el + lestl” + lexil’)
B—3 R
e (levull).

for any 0 < a < 1, and where the function C is finite and increasing in each variable
separately. Indeed, then the terms

CaB?

2 2 2 2
z@flka{K%“ﬁ + [copu|” + |covil + [copug’}

can be absorbed into the left side of (3.13) for o = 22%;}32. Let us illustrate the

bound for the term |fR (CLvy) (Cvgﬁ_l) }7 which is given by

(315) ‘/RC ((k28y>t 3UUy —+ {k222U4 + kQQ?)'UQ'Uy}) (CUgﬁil)

< o[ ¢(w0))300,) (@)

+C ‘/ C(kQQQ’U4 + ]{1223U21}y) (C’U;’Bil)
R

Now the first term here satisfies

‘ /72 ¢ (ks 80, ) (02°)

‘/ (3vwy) (k23y§2v§’371)
R

C ‘/ (3vvy) (4211571]6281/1}5)
R

IN

)

+C ’/R (3vuy) (Qvf_lkggyvg)

since Qﬂﬁ_l is bounded. Estimating these two terms separately, we have

‘/R(?wvy)( 21}571k28yv5)

= | [ o) d,ed)

C ~
Slevli [ Jeof+aB [ klcof.
« R R

IN

and

[ ) ()

cn@nim/ }gv5}2+c,42f}2/ klogol|”.
R R

' /R (3vvy) (Cul ko, 0d)

IN
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As for the second term in (3.15), we have

’/RC (k222v4 + k:223v2vy) (Cviﬁ_l)

4 3 2 2‘% L 2 8 2
< Cllev]lto ( I \cvy}) RI% o+l [ J6of)

< Clevlt ( I |<v5}2+n|)+c||sv|ioo [ 1o

The remaining terms in (3.14) are handled similarly. Indeed, from (3.12), we see
that the only differences in the remaining terms are that some powers of v are
replaced by the same or smaller powers of u, y-derivatives by z-derivatives, and
partial derivatives of k by others of the same or smaller order. This completes the
proof of the lemma.

Theorem 3.6. Suppose that w solves (3.9) so that with u = w, and v = w,, the
four functions ug, uy, v, vy give a smooth solution of the system (3.11) in R. Then
for g > 2, we have u,,uy, v, vy € L9, i.e. V2w € L with control provided Ry is
sufficiently small, depending on q.
Proof. Using the one-dimensional Poincaré inequality, we have for 3 > 1,
2 2 2 2
[l feu o+ feol+ o}
2 B2 3|2 3|2 3|2
< CR? |0:Cul|” + [0xCuy |” + |0xCvl | + |0uCuy |
R
2 B2 3|2 3|2 3|2
< COR? |COuR|™ + [COpuy |” + |COpvl | + |Onvy |
R
CA2R? 8|2 8|2 B 8|2
+ A 01w |” + |ovuy | + [orvf | + ooy |

since |0;¢| < Ap;. Now using the above lemma on the first term on the right side
above, and then absorbing the term

1
CRC, (ﬂ,r%,B, ||£Vw|oo> /R{Kui!” |cul|” + [¢o? | + ]@5’2}

into the left side for R; sufficiently small, we have

(3.16) /R {\guéﬁf + |Cu5|2 + |Cvfi2 + |Cvg|2}

I} 2 2 2 2 2
<o (7)) [ {lewd + el + levedl” + lewwi )
1 1
—— eVl ) +CCy ( 8, ——

o el ) +ce (5.5
< [k {lenl + losuil + o + g}
R

Now the first term on the right is under control by our assumption that L is elliptic
on the support of g, (see Proposition 3.3 above). The second term is clearly under

1+0Cs <6, A, B, |£Vw|oo>

10
2
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control. We will next show that the third term on the right hand side above is
dominated by

C<@—¥LT¢LBAKVwmm)
-3

{1+ lgully, + eI, + g2l + s, §
x {1 a3+ ey 12 + Il + oevy 122}

for some p < 2. Recall that we extend the usual convention regarding constants
C' to the functions C (ﬁ, ﬁ, A, B, HwaHoo) - they may change from line to line,

while remaining increasing in each variable separately. Indeed, with this done, we
can then choose § = % and conclude that Vu, Vv € LY with control for ¢ = % > 2.
In fact, we can continue to iterate this inequality as long as R? is sufficiently small.
Thus we end up with Vu, Vo € L9 with control for ¢ large provided R; is small
enough.

The terms involving g,, namely

(3.17) /7215{}927’3}2‘*"92u5’2+|02U£|2+|Q2U5|2}7
are handled with Lemma 2.10 as follows. For g > 1,

(3.18) / k |92v5\2 dzdy < Cp / (5]1921)5*1£vy) (5[1g205)
R R

2

el (ot en) )

+CW@§¢L@2<AJ&€V);

_ 8 2 ﬁp)%
—cor+ o5t cpoan? ([ o)

where

_ . AYVB 2

and with similar estimates for wu,,uy,v, in place of v,. We remind the reader
of the Convention in the introduction: %k means k(z,w (x,y)) and dyk means
ko (z,w (x,y)) w,. We thus note that both ||sk| .. and |5k, | are under con-
trol. It follows that the last term on the right side of (3.18) has the desired form.

We first consider the simpler term I7, and plugging in the nonlinear term for
Lvy, we have

7| (v o)) ()
(et ) ()

=1IT+1V.



28 ERIC T. SAWYER AND RICHARD L. WHEEDEN

Now using limiting arguments to justify the needed formal manipulations (recall
that 8 > 1 here), we have

s-1 5 5 3
111 = (3vvy) (k2dyopv) ') < C 3vvg k20,0yv5 ||+ CA|&v| o |§vy|
R R R

5 5|2
< B [ kledyi| +0A(l€vlon +levl) [ Jecd
R R
1 s|? 5|2 52 5|2
—1 -

by (3.13) with g in place of 3, and with g, in place of ¢, upon combining all three
integrals there under the common cutoff function £. This shows that term I17 is

dominated by (??) with p =1 upon using [ f <1+ ([ f)2, valid for any f > 0.
The estimate for IV is

1V < Clleo]l’.~ ( /R e +R|) +Clleolfn /R eof].

Turning now to term I, and plugging in the nonlinear term for Lv,, we have

I<c ’/72 {5[1g2v5_1 ((k28y)t31}vy)} (51192115)

+C ‘/ {51192’[)5_1 (k‘2221}4 + k‘2231}27}y)} (6[1@2’[}5)
R
=V4+VI

We can quickly dispense with term VI using that I; maps LP to L? for 1 < p < 2.
We handle term V' with the identity

1
g

1
B

1
vgflaykgvvy = 8yl€2v05 + (1 — —) vyﬁaykgv =

1
3 Bykgvvg + (1 — —) vg (kgvy + k22v2)

B
to get

Vv = C /R (51192U5_18yk32vvy) (511921)5)
1 1
- ¢ /72 (51192 [Baykﬂvf + (1 B B) vy (kavy + k2202)]> (€Li05v}))

< C’/(ﬁ]lg28yk2vv5) (§I1Q2U5)
R

+C '/R (£I1QQU5kQUy) (51192@5)

+C ‘/ (5[1921)516221}2) (511921)5)
R
= VII+VIII+IX.

For term V1I, we commute g, and 9, so that we can exploit the LP boundedness
of 10y as follows:

VII<C ’/ (f]layg2k2vv5) (f]lg2v5)
R

+ ’/R (5[1 (8?/92) ]4121}1}5) (5[1Q21;5) .
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The first integral is

’/ (1%52]183/5)2/42111}5) (%Qﬂf)’ < C/
R R
2 2
C (/ |§2118y92k2vv5|p) ’ +C (/ |g2v5}p) ’
R R
<c(i+lel) ([ ledr)
R

i, and the second is dominated by

2
Iégﬂg’

2 52
Iéﬁ IlayQngvvy’ +C/R

IN

2
2 2 B
c/ €11 (0y00) kavvll|” + c/ [€Loyvy|” < C (1 + A2 Hrsvllim) </ |505|p> )
R R R
for any 1 < p < 2. Term IX is dominated by

c/ }51192v5k22v2|2+0/ hoyuf|” < C(1+ H&vll‘im) (/ }fv5|p)pv
R R R

for any 1 < p < 2 also.
In term VIII, the most problematic, we have an additional power of v, to deal
with. We write using 05 = 05¢&,

. e (1

C||§Il§21192v5|’Lw/ |vyk292v5|
1 CR
C(/ |gv5|”) {—/ \5vy|2+f32g/ k|g2v5|2},
R € Jr R

for any 1 < p < 2 (since Iy : L7

compact

VIIT = C

IN

IN

— L7 for such p) and ¢ > 0. We can
- _1
choose ¢ > 0 sufficiently small, in fact ¢ ~ B~2 (fR |£v5}p) P so that the term

1
(Jr [€02|")7 eB? [ k ‘g2v5‘2 can be absorbed into the left side of (3.18). Then
term VIII is dominated by

(/R|£U5|p>%§/nﬁvyl2wm§2 ([ |gu5|”)%/ﬁ|gvy2,

as required. The remaining terms in (3.17) are handled similarly and this completes
the proof of the theorem.

3.3. The iteration. We can now obtain our a priori inequality (3.1) for the qua-
silinear equation (1.1) We briefly restate Theorem 1.1 as follows.

Theorem 3.7. Suppose that k is smooth and positive for x # 0. Then with C, as
in Theorem 1.1, we have

[CD% 0| < Ca (2Vwl, L), [a] = 0.

for all smooth solutions w of (1.1) in Q' such that (z,w (z,y)) € L for all (x,y) in
the support of .
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Proof. Recall that in the subsection on ”"Reverse Sobolev Embedding”, we used the
fact that Vw € L with control together with the fact that Vw = (w,, w,) satisfies
the system (3.4) to conclude that V?w € L? with control. We now wish to deduce
that V3w € L? with control from a somewhat weaker integrability assumption
on V2w, plus the fact that V?w satisfies an appropriate system. We continue
to use the phrase “under control” to mean bounded by an increasing function
Co (|2Vwl|| o , L) of ||%Vwl|| € [0,00) and L € P.(£2), etc. At this point, we
already know that if w is a smooth solution of (1.1) in R, then

V2w € L9 with control,  for q large depending on Ry,
Vw € L% with control,
and that V2w satisfies (3.12), a system of the form
(3.19) £ (VPw) = P (Vw) (V’w) +Q (Vw) + T* [R (Vw) (V*w) + S (Vw)]

where P (Vw), Q (Vw), R(Vw) and S (Vw) (at this early stage in the iteration,
the polynomial S vanishes) are polynomials in the components of the bounded
vector field Vw with partial derivatives of k as coefficients. Also, the expression
P (Vw) (Vzw) means sums of such polynomials times some second order derivatives
of w. Finally, T' is a subunit vector field of the form k;0,. We can now apply the
methods of the subsection “Reverse Sobolev embedding”, since the components
of V2w appear only to the first power multiplied by components of Vw, which
are bounded. To estimate the L?, . norm of V?w by the technique of the proof of

Theorem 3.4, we need to estimate fR ’836 ((:877V2w) }2. To do this , we will use the
analogue of Lemma 3.2 to estimate

(3.20) /R (|ax (Conv?w)|” + k|0, (¢ConVPw) |2)

for 0 = 9, or 0 = 9, by applying Corollary 2.7. The main terms to be estimated
are of the form

(3.21) /73 (ConLV>w) (ConViw) .

Replacing LV?w by one of the terms in (3.19), say T* [R(Vw) (V?w)], we can
decompose the resulting expression into three pieces I + II + II1 as in the proof
of Lemma 3.2. Term [ has the form

(3.22) / (COnR (Vw) (V?w)) (k;0,(onV>w),
R

which is dominated by

C .

¢ / (COnR (Vw) (V2w)[* + CaB? / k|0, Convul?.

@ Jr R
Now the second term here can be absorbed, while in the first term we use

OR (Vw)n (Vw) = R(Vw) dn (V?w) + nV?w (R (Vw)) .

Now R (Vw) is bounded, and so we can use the one-dimensional Poincaré inequality
to get

[ R0 on (7o) < oR ler (Vu)l [ (000 ()],
R R
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which can be absorbed for Ry small enough. Finally, 9R (Vw) consists of bounded
terms times components of VZw, plus bounded terms, and we simply use that
V2w € L* with control. Terms IT and IIT are also handled Just as in Lemma 3.2.

The result of all this is that VZw € Hloc with control, or V3w € Lloc with control.

Moreover, V3w solves a system of equations obtained by differentiating (3.12), and
thus has the form

(323)  —L(V'0) = (ko) {(V2w)"+ (Vw) (V) } + K (Vw)’
+I5 (Vw) ( V2 )+IC2 (Vw) (VQw)2
+IC2 VU/ ( 3 ),

2

where K; denotes a derivative of k of order j, and K; (Vw)™ represents a sum of
products of such derivatives times m** order products of first order derivatives of
w. For example, vyy = Wy, satisfies

—0yLv, = 0y {(kg@l,)t vy + {k222U4 + k223v2vy}} ,
or
—Lvy, = (kgay)t (31}5 + 4vvyy) + k2223v3vy + koo (61}1}2 + 3v2vyy)
+ {k;22221)5 + k2224v3vy + k;2223v311y + k9903 (2111)5 + UQUyy)} .

Here /C4 = k2222, etc.
Note that this system has the form

L (Viw) = P (Vw) (V?w) + Q (Vw, Vw) + T* [R (Vw) (VPw) + S (Vw, VZw)],

where P,Q, R and S are polynomials with partial derivatives of k as coefficients.
Altogether, we have

Vw, V2w, V3w € L? with control,
L (Viw) = P (Vw) (V’w) + Q (Vw, Vw) + T* [R (Vw) (V’w) + S (Vw, Vw)] .

Note that the Sobolev embedding theorem shows that we actually have VZw € L9,
for all ¢ < oo (prior to this we only had V2w € L4 for ¢ depending on R;) and
Vw € L* with control (the latter assertion is of course redundant at this point).
We can now apply the methods of the previous subsection “An LP improvement”,
since the unknowns V3w appear only to the first power and times bounded terms
consisting of polynomials in Vw, so that we can use V3w € L? with control. Terms
of V2w can appear to higher powers (actually, at most squared, which means we
need only ¢ = 4), but they can be handled since V?w € L9 with control for q < oo.
The result here is that V3w € L with control for g large depending on R;, and
so also V2w € L with control, by the Sobolev embedding theorem. We can now
apply the methods of the subsection “Reverse Sobolev embedding” as we did just
above, and the result is that V*w € L2 with control. Finally, computing £ (V4w),
we obtain

Vw,Viw, V3w, Viw € L? with control,
L(Viw) = P(Vw) (V) +Q (Vw, Vw) (Vw) + Qo (Vw, VZw)
+T" [R (Vw) (Viw) + S (Vw, VZw) (V3w) + Sy (Vw, VZw)],
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where again by the Sobolev embedding theorem, V3w € L4, ¢ < oo and VZw €
L> with control. Note that this time, components of both Viw and V3w appear
only to the first power, multiplied by polynomials in the components of V*w and
Vw, which are bounded. This is the sense in which the equations for higher order
derivatives become progressively less nonlinear.

We can now iterate this process to obtain

(3.24) Viw € L? with control, 1<j</0+1.
£(V*w) = P(Vw) (V) +Q (Vu, Viu) (Viw)
+Qo (vw, ...,v‘*lw) + T [R(vw) (v“lw)]
+T[$ (Vao, V2w) (V') + S (Y, o, VM) |

for all £ by induction on ¢, where P, Q, Qo, R, S, Sy are polynomials with partial
derivatives of k as coefficients, and as before, the Sobolev embedding theorem shows
that the first line in 3.24 can be improved to

Viw € L™ with control, 1<j<e-1,
Viw e L with control,  for q < oo,
Vitlw e L? with control.

We emphasize that V&l and Viw appear linearly in (3.24) with coefficients in-

volving derivatives of order at most two of w, and that V1w and earlier derivatives
are bounded. For example, although we will not need the following information
on the form of £ (351}), it turns out that £ (8511) is a sum of terms of the type
that arise from P = Zﬁ:o (35”7%) (3$U£+37j) upon expanding 331}”3*3'. More
specifically, we mean that the relation between derivatives of v and derivatives of k
in the expansion of £ (851}) is the same as in the expansion of P. As a consequence,
8731) appears linearly in £ (851)) and P for i > %.

Returning to the induction, if (3.24) holds for a given ¢, then as above, the
previous subsection “An L? improvement” shows that V1w € L4 with control, for
q large, and so by the Sobolev embedding theorem that Viw € L>. The subsection
“Reverse Sobolev embedding” then shows that V2w € L2. Tt is in these iterations
that we require R; to be successively smaller as the constants involving earlier
derivatives become progressively larger. Differentiating the equation for £ (V”lw)

yields the same form for £ (V”Qw). This establishes (3.24) for £41 and completes

the proof of the a priori estimates (3.1).

We remark that for £ > 4, the technique of the section ”Reverse Sobolev em-
bedding” only requires (3.24) in order to conclude V2w e L? with control, rather
than having to first use the Moser iteration to obtain Vitlw e LY, for g large. As a
result, we can inductively prove (3.24) for £ > 5 (assuming it holds for ¢ = 4) with-
out resorting to the Moser iteration techniques of the section ” An LP improvement”.
To illustrate, we estimate the analogues of (3.20) and(3.21) with V2w replaced by
vitlw:

(3.25) /72 (

0, (Comv'"*'w) )2 + k[0, (conv*w) D
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and

3.26 oLVt mv-luw).

(3.26) /R (C n w) (C " w)

After plugging into (3.26) part of the formula for £ (V“lw) in (3.24), namely
T [R(Vw) (V5 1w) + 8 (Vw, V2w) (V)]

and then moving T? to the other side of the integral, we obtain the following
analogue of term I in (3.22):

/R (QanR (Vw) (Vé"’lw)) (kjﬁygﬁnvzﬂw)
+ /R (gans (Vaw, V2w) (v‘*w)) (kjayganv“lw) .

The more problematic term is the second one which can be dominated by
2

g /R ‘gans (Vw, V2w) (vfw)‘2+ca1§2 /72 k‘ayganv“lw‘

The second term here can be absorbed into (3.25), while for the first we use

98 (Vw, Vw) n (V%}) =S (Vw, V?w) dn (Vlw) +n (Vzw> a8 (Vw, Vw) .
Since S (Vw, V2w) is bounded for £ > 3, we can use that fR ‘C@n (Vew) ‘2 is under

control by induction to handle the L? norm of the first term here. As for the second,
98 (Vw, V*w) includes components of V*w, which will be bounded provided ¢ > 4.
The remaining terms are also handled by such techniques.

4. PROOFS OF THE MAIN THEOREMS

In this final section, we apply Theorem 3.7, our a priori estimates in terms of
the gradient, to obtain the remaining theorems mentioned at the beginning of the

paper.

4.1. Close to one variable curvature. We begin by proving Theorem ??7. Recall
that the desired conclusion is

(4.1) ICD%wl| o < Ca (L),
where w is a solution of the quasilinear equation (3.2) satisfying the condition (3.3),
(x,w(z,y)) € L for all (x,y) € support ().

We will say that an expression involving derivatives of w is under special control if
it is dominated by the right side of (4.1). Note that this is a stronger condition than
requiring that w is under control. Since |u| < C'\/v by our assumption in (1.12),
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it is enough by the previous theorem, Theorem 1.1, to prove that ||(v|| < Cq (L).
This will be accomplished by using Plancherel’s theorem in the following way:

v {// 1+ |g|2+d|i|d274r |a|2|T|2}2 %
{// (14 1o + |7 + 1ol 177) ’@<o,7>]2dam}g
= ¢ {// (|Cv2 + ‘(Cv)z|2 + ‘(Cv)yr + ‘(Cv)my 2) dwdy}% )

This calculation reduces matters to showing that

(4.2) IColl 2 IV (€0l 2 5 1028y (CV)l 2

are all under special control. This in turn will be accomplished by establishing in
succession that the following k-gradient integrals are under special control. Here,
and often in subsequent inequalities, the cutoff functions may change from instance
to instance:

Ivle < |Gl

(4.3) / (|§u|2 +k |§v|2) is under special control,
R
/ (|§8xv|2 +k |§8yv|2) is under special control,
R
/ (|§8xr]vy\2 +k |§8ym}y|2) is under special control.
R

Indeed, Poincaré’s inequality in one variable shows that the first term ||(v|,» in
(4.2) is controlled by ||[(0;v||;2 + ||(,v||; 2. Now the term ||(0,v] - is included in
the second line of (4.3) while the other term ||(,v||, - is controlled using (1.12) and
the first line of (4.3) since k > ¢ > 0 on the support of ¢,.

The second term in (4.2) can be controlled, allowing for a change in cutoff func-
tions as announced above and taking into account terms already estimated, by
HCyUHL2 + ||yl ;2. The first of these is controlled by ||CzvaL2 + ||Cyvz”L2 by
Poincaré’s inequality, and both of these are controlled as above. Poincaré’s inequal-
ity and earlier estimates again show that the second term, ||nv,| ., is controlled by
1COnvyll 2 + N0yl ;2. The term ||§8£,;17vy|\2L2 is included in the third line of (4.3),
while the term ||, v, ||, is controlled by the second line of (4.3) since £ > ¢ > 0 on
the support of 7.

The third term in (4.2) is controlled by [|(0,0yv||; > + [|[[020y,¢] V|| ;2. Now as-
suming here, as we may, that n = 1 on the support of (, the first of these terms
squared is included in the third line of (4.3). The second is controlled in terms of
|V (Cv)]| = (for a cutoff function ¢ with an enlarged support), which is the second
term in (4.2) and has already been controlled in the previous paragraph.

We have from (2.5) with k = k (z,w (2, y)) and £ = 82+ 9k (z,w (z,y)) 9, that

/72 <|gaxw|2+‘g¢%ayw]2> ng/R(g,cw) (Qw)+4A2/R|glw|2+4A2/Rk\g2w|2.
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Since Lw = 0, we have ||Cul| ;- + HQ\/EUHB < C'||€w]| ,,, which by (3.3) proves the
first assertion in (4.3). Now replacing w by v we obtain
(4.4)

[ (1o +kico,l) < =2 [ (Lo o)+ a4 [ JouwP + 442 [ kol

Now [, [0v]” < C [ k|oyv|? (since k > ¢ on the support of o) and [, k \gjv|2
Hf\/EvHLQ < C|sew||, by the previous inequality. Next, by (3.4),

(4.5)
‘/R(Cﬁv) (Cv)| = ‘/72 (k2v?) 8, (¢v)| < '/R (kv?) (C20,)| + ‘/R (ka?) (26¢,0)]

Now by our hypothesis (1.11), the second term is dominated by

c/chy!k% ol < c/chy\ K [o]?

since |kv| < C by (1.12). Continuing, we bound the above by

C/ !cy!2k|v|2+0/ |<v\2scA2/ k|g2v|2+OR%/ 192Gl
R R R R
§0A2/ k|92u|2+0R§/ \(6J;U|Q+CR§/ ¢, 0%
R R R

The first of these terms is dominated by CA? ||%w||c2>O by the first inequality in
(4.3). The second term on the right can be absorbed into the left side of (4.4)
for Ry sufficiently small, and the third is controlled since ¢, is supported where
k > ¢ > 0. Indeed, we then have [ 0 < ATZ SRk |€v|?, which is under special
control by the first line in (4.3).

The first term in (4.5) satisfies

‘/R(k?”Q) (¢%v,) / (K¥cvy) (che?) SC&L’C'%'2+§/R(<2k2v4)

Ce [ hicu+ 2 /(Cv) ,

by (1.12), where the term Ce [, Ck luy|” can be absorbed on the left side of (4.4),
and the remaining term is bounded by

O / o.co? < CR2 / ol + Cr2 [ et
€ R € R € R

This can be handled as above, absorbing the first term on the right for R; sufficiently
small, and using k > ¢ > 0 on the second term. This proves the second line in (4.3),
and hence also [|(v||, . < C'||>zw||, by the one-dimensional Poincaré inequality.

In preparation for proving the third line in (4.3), we will now use the Moser
iteration technique to boost the integrability of v to [|(v||,¢ < C|[s>w| . The
inequality in Lemma 2.8 yields

/(ygavﬁy + k[ Coy ﬁy)_w ‘/ (CLw) (Cv**7Y)

+<2ﬁ—1) /|Q1 6| +< ) A2/72k|92vﬁ|2,

IN

C

IN
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for 8 > 3. Now k > ¢ > 0 on the support of g, and so [, |‘leﬁ|2 <C [k |glvf8|2.
As a result of this together with (1.12), the second and third terms on the right
above are dominated by

(4.6) C(2ﬂﬁ1>2A2/R‘5vﬁ_%

Remark 4.1. Note that the inequality kv < C from (1.12) has permitted us to
avoid using the difficult Lemma 2.10 to handle the term fR k IQQUBIQ.

2

We will now show that the first term is bounded by a similar integral. We have

(4}%1 (CLo) (¢v*71) ‘/R (O, kv?) (Co?*)
’/R (Chav?) (€O, 1)

Now the first integral here satisfies

[ (k) (0,07
28—-1 28 -1

T [ @) @) < 022 [ oo [Vico,|

s 8 < € 8|2 B

/R|Cv |‘\/Eg“6yv )g a/R’Cv ’ —l—C’a/Rk:’Cayv

< 025 -1
B

since < 2. The second term here can be absorbed for o chosen small enough,

while by Poincaré’s inequality in one variable, the first is dominated by

CR%/ |0.¢0%|7 < OR?/ |C31v5|2+CR%/ [
R R R

(&% 67 (&%

IA

42 ‘ /R (¢, kav?) (o2 1)

2

b

28—-1

The first integral on the right here can now be absorbed for R; small enough, and
iq + C _1
the second is at most £A*R} [, ‘fvﬁ 2

The second integral on the right side of (4.7) is at most

C/Rk% }CyCv25+1| SC/R)CyCU%_% SCA/R‘&)B_%

and together with the previous estimate, (4.6) and the fact that v is bounded below
by (1.12), this shows that

/R (o + ko) < 0 (25[3_ 1)2 A2 /R jeo %

Using the one-dimensional Poincaré inequality again along with the inequality /v <
,/% < \/% on the support of ¢, we conclude that

[ et

2
. c . C
since v < F < % on the support of (.

2

b

2

IN

CR?/ EXSs gCR%/ \Camvﬂ|2+CR%/ |¢,v?)
R R R

< o) e Lo
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12

Applying this with successively g = %, g, .y 7, We obtain that

(48) Lletf <c [ el < 0.

We now wish to show the third line in (4.3) is under special control by establishing
Lemma 3.2 without assuming that ||(v|| is under special control, rather using only
that ||€v]| s is under special control along with our hypothesis (1.11), and of course
(1.12). The first step in proving Lemma 3.2 is the application of Corollary 2.7 with
k (x,y) replaced by k (z,w (x,y)), yielding an estimate for

@9) [ (10 com)P + k10, onP) + [ (0. €om)* + K10, o) )

Of course we really only need to estimate the integrals involving v. We remind the
reader that k refers to k (x,w (z,y)) here. Tt is crucial to note that our hypothesis
ko] < Ck? implies that k (z,w (z,y)) satisfies (1.5) - see (3.6). To illustrate the
remaining argument, consider the revised estimate for the following term which
arises in the proof just following (3.7):

<4.j{g><<ancv> (Con) /R (COM?) (kadyCono) — /R (02) ([kay, n0C2] D)

- /R (COmv?) (kaC, o)
= I+ I1T+1I1.

For term I we use |ka| < Ck* to get

C
1<% [ #lon®f < [ klo,conf.

and absorb the second term into (4.9) as usual. The first term now satisfies
/ k2 |877v2 |2
R

since |kv| < C by (1.12) again, and since ||(v||, is under special control. The first
term here is now absorbed into (4.9) by Poincaré’s inequality as in Theorem 3.4.
Term II7 is handled in similar fashion, using that vk&nv already has L? norm
under special control.

For term I1 we use

IN

}2

0/ k2 |v77811|2+0/ k| (9n) v?
R R

C Il + ClI(@n) vl2 < Cllpvllf + CA? ||¢w|l . ,

A

[k20y,nOC?| = kan,0C* + kand2¢C, — n¢* (0ks) O,

to obtain

1] < ‘/R (v%) (kam, OC*Onpo) + /R (v*) (k2md2(C, o)

+' /R (v*) (nC? (Ok2) 0,0v) |



38 ERIC T. SAWYER AND RICHARD L. WHEEDEN
Now using |kz| < Ck#, the first of the terms here satisfies
‘/ kgnyBC 8771) ‘/ kgnygagc’)m)) /72 (v2) (kgny (9¢) Canv)
< 05/ k|0¢COnu|? +9/ k2|nyv2|2+0/ K2 |n, (8()v2|2—|—0/ Eolk
R € Jr R R

C
< Ce [ kjocoml” + A" €0l +C ol

where 0 < ¢ < 1 since kv < C. The first term on the right above can be absorbed
into (4.9), while the second term, |[£v||, ., is under special control, and the third
term, Hm}”f, can be absorbed into (4.9) by Poincaré’s inequality in one variable.
The term fR (v2) (kgﬁ@QCCyanv) is handled in the same way. Finally, the term
involving Ok, is handled separately for 0 = 0, and 0 = 9, as follows. In the case
0 = 0;, commuting one factor of { with d, we obtain

(4.11) /R (v?) (n¢? (Oxk=) 9y 0x1v) R(UQ) (n¢? (ka1 + kaou) 9, 0,mv)

< ’/ (n¢v?) (k210:¢0ynv)
R

+ )/R (1Cv?) (ka2udy(Oynv)

+ /72 (v*) (NCC, (ka1 + kaou) Oynu)|,

where the final term here is under special control since ¢, is supported where k is
bounded away from zero, and so by (1.12), where u and v are bounded. Indeed,
the final term is at most

k
c/ﬁgw%mﬂs/—mw%mnzc/k@wﬁ+c/kmw7
R R C R R

which is under special control by the first two lines of (4.3). The first two integrals
on the right side of (4.11) are dominated by

C 52
o [ neot] +a [ jocomr.
@ Jr R

since |u| < Cy/v and 0 < ¢ < v. The second term here can be absorbed into (4.9)
and the first is under special control.

Now we turn our attention to the case 9 = 0,. For the moment we will consider
k to mean k (z,y) and write ko for (Oyk) (x,y), etc. We will need the fact that
|ks| < Ck implies |Vky| < Ck2. Indeed, k — cky > 0 and so by (1.5),

IV (k = cka)| < CVk — cky < OV
which implies by (1.5) again,
¢|Vky| < |VE| + CVE < CVE.
This inequality 1holds for (x,y) in a compact subset of Q, and so |Vks (z,w (x,y))| <
Ck (z,w (z,y))? holds for (z,y) in a compact subset of the interior of TQ2. With

this we now have

/ (v?) (1C* (Dy k=) Dy dynv)
R

IN

‘/ kggv)a 8y77v)
‘ /R (nev?) ( ﬂaygaym;) ,

IN




A PRIORI ESTIMATES 39

plus a term fR \77(1)3| ‘\/Egyﬁym;’ that is wunder special control by the Cauchy-
Schwartz inequality, (4.8) and the second line of (4.3). We continue with

‘ /R (n¢v®) (\/angaynv)

where the first term is under special control and the second can be absorbed into
(4.9). Similar arguments handle the term [, (¢9nLu) (¢(Onu) in (3.7), except that
this time we have (Onu = (0,n0w, which is either (d,nu or (J,nv, modulo terms
whose L? norm is under special control. No factor of vk is needed to absorb this
term and so we only require the boundedness of the second order partial derivatives
of k that arise here. The remaining terms in (3.7) are easily handled using (1.11),
(1.12) and the terms already proven to be under special control, thereby establishing
that (4.9) is under special control, and completing the proof of the third assertion
in (4.3).
As indicated at the beginning, this completes the proof of Theorem 1.1.

C 2
S—/ In¢v?| +a/ k |0,¢0,mv)?
a Jr R

4.2. The generalized equation.

Proof. (of Theorem 1.2) The proof is very similar to that of Theorem 1.1. The main

points are that inequality (1.5) persists for k (z,y, v, p, q) in a compact subset K of

xR3, and can be applied to the quasilinear equation (1.8) since (x, w (x,y),7r (z,vy), 2 (2,9),y)
lies in a compact subset of Q x R? for (z,y) € R, a compact subset of ', by the

C' a priori estimates in say [1] (the proofs in this reference use only k& > 0 for

these estimates). Moreover, the gradients of the auxiliary functions r and z are
expressible in terms of z and the gradient of w times smooth functions, namely

from

(4.12) Ty = 2 + YWy, Ty = YWy, 2z = KWy, 2y = —W,

where k is evaluated at (x,w (z,y),r (x,y),2 (z,y),y). Thus Vz satisfies the same
estimates as does Vw at any point in the argument, and then likewise for Vr (recall
that the sup norm bounds of both z and r appear on the right side of the conclusion
of Theorem 1.2).

To illustrate, we consider the extension of Lemma 3.1 to the present setting. If
we set

L= 0%+ 0,k (x,y) 0,

where k (z,y) = k(z,w(z,y),7 (x,y),2(z,y),y), and differentiate the equation
L (w) = 0 with respect to y, we obtain

£ (@yw) = =0, (0,k) 0,
By using (4.12), we have

8y75 = kawy + ksywy — kqw, + ks
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where the partial derivatives k; are evaluated at the point (z, w (z,v) ,7 (z,y) , 2 (x,9) , y).
The key step in extending Lemma 3.1 is to estimate (with v = dyw and u = d,w)

_ /R (CLv) (Cv) = /R (ca, (a,%) v) (o) = /R (¢O, (kv + kayv — kyu + ks) v) (Cv)
= [ @) o)+ [ (cOkan) (0
R R
= [ oyku) Go)+ [ (Dykso) (o).
R R

The first term on the right is the only term appearing in the proof of Lemma 3.1,
and it is evident that the same techniques apply to the remaining three terms. This
completes our discussion of the proof of Theorem 1.2.

We now extend the argument in the previous section to prove Theorem 1.3.
Additional considerations arise due to the interplay of partial derivatives of k and
the derivatives of r and z in (4.12).

Proof. (of Theorem 1.3) We suppose that w is a smooth solution of (1.8). If k de-
notes the function k (z,w (z,y),r (z,y), 2 (z,y) ,y), then a direct calcuation yields

(4.13) Ok = ki + kowy + ks (z 4+ ywy) + kakw,,
83,% = kQU}y + k:gywy — kqwy + k5.

Just as in the section on quasilinear equations, we continue to write & in place of
k and continue to use variables = and y, writing k; with j = 1,2, 3,4, 5 to indicate
partial derivatives of k with respect to the original 5 variables z, y, v, p, ¢ as in (1.9).
Thus for example, k4 means (recall that k = k (x,y,v,p, q))

(apk) (x7w (xvy) ’T (zay) 7Z (xvy) ay) .
We will say that an expression is under special control if it is dominated by
C (L), when (z,w,r,z,y) € L compact C Q x R>.

We now establish analogues of the three successive assertions in (4.3). We have
from (2.5), namely

and Lw = 0, that ||(0,w||, + HC\/anUJHQ < C'||€wl| ., the analogue of the first line

of (4.3). We now wish to estimate, writing u = d,w and v = dyw as usual,

(4.14) | (160 + kico,ul?) + [ (1conl + kico,oP).

Note that it is necessary to include the k-energy of u as well as v this time because
the formulas in (4.13) each involve both u and v on the right hand side. Replacing
w by v in (2.5) we obtain

/R (\gazvﬁ +k \gayvﬁ)

IN

2 /R (CLv) (Cv) + 442 /R loyuf? + 442 /R kloyol?

2 /R (CLw) (Cv) + TUSC,

IN



A PRIORI ESTIMATES 41

where TUSC stands for terms under special control. Indeed, the indicated integrals
are TUSC since [ low]? < C’kaz\glvF (since kK > ¢ > 0 on the support of

2
0,) and [ k |gjv|2 < HE\/EUHLQ < CH%wHiO by the earlier inequality. Next we
compute

(4.15) /R(ﬁﬁv) (Cv) = —/R(Cf’?y (9yk) v) (Cv)
- /R (¢O (kav + ksyv — kau + k) v) (Cv)
= [k [t 0
R R
_/ uvky (8yg%)+/ vks (9,¢%0) .
R R

Now we use the hypotheses vk [u| < C and kv < C as well as 9,(*v = 2§§yv+428yv
and note that 2\/Eg“yv has L? norm under special control, and that the L? norm of
alVkdyv can be absorbed into (4.14) for a sufficiently small. Moreover, we claim

that = [ |Cv|? is a sum of terms that can either be absorbed into (4.14) or are under
special control. Indeed, by Poincaré’s inequality in one variable,

1 1 1 1
~ / o < OB / 0uCof* < O R} / Colt + OB / COuul?.

The first term is under special control since k > ¢ > 0 on the support of {,, while
the second can be absorbed for R; sufficiently small.

For the remainder of the proof of (4.14), we will say that a term can be handled
if it can be decomposed into a sum of terms that can either be absorbed into
(4.14) or are under special control. We will sometimes write TUSCA (Terms
Under Special Control or Absorbable) to designate terms that can be handled.
From these observations, we now see that in (4.15), we need |ko| < Ck? to handle
S G0k (COyv), k3| < Ck? to handle S CyvPks (COyv), |ks] < Ck to handle
Jr Cuvky (COyv), and |ks| < Ck? to handle J Cuks (COyv). The corresponding
terms where 0, hits ¢ are handled similarly. Now we turn to

[ (comuP s ricoul®) < =2 [ (cou o+ aa [ ol +44° [ Kl

R /R (CLu) (Cu) + TUSC,

IN

where the terms designated TUSC are under special control since ||Cul| ;- is under
special control. We thus compute

- / (CLu) (Cu) = / (C0, (0:K) v) (Cu)
R R

/R (COy (k1 + kou + k3 (2 + yu) + kakv) v) (Cu)
= / vk (ByCQU) + / uvks (8yC2u)
R R
+/ (zv + yuv) ks (8yC2u) +/ v kgk (8y§2u) .
R R
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Now we use ayCQu =2¢C,u+ C28yu and note that 2¢,u has L? norm under special
control, and that a¢d,u can be absorbed into (4.14) in L? norm for sufficiently small
« if multiplied by a factor vk. Using vk |u| < C and kv < C together with the
fact that [ |Cv\2 can be handled, we see that all of the above integrals are TUSCA..
This completes the proof that (4.14) is under special control, the analogue of the
second line of (4.3).

Altogether we now have that

(4.16) l€duvll,= + ||evRoyo| |+ llguull . = TUSC.

By the Poincaré inequality in one variable, together with k£ > ¢ > 0 on the support
of ¢,, and |u|] < C'v/v, we also have that

(4.17) 1€vll 2 + [I€ull Lo = TUSC.

The next step, following the proof in the previous section, is to use the Moser
interation technique to show that ||(v||;s is under special control. The inequality
in Lemma 2.8 yields

(4.18) /R (}Ca,vvﬁ}? tk ygayvﬂﬁ) < 2§ﬁ21 ’/R(gﬁv) (o1

28\’ 512 28 \° 52
+<2ﬁ—1> AQ/R‘Q“’ | +<25—1> AQ/R“Q?”

for 8 > 3. Now k > ¢ > 0 on the support of g, and so [, |‘leﬁ|2 <C [k |glvf8|2.
As a result of this together with (1.12), the second and third terms on the right

above are dominated by
g ? 2/ ‘ g1
C <2ﬂ — A - v’ T2

We will now show that the first term is bounded by a similar integral plus terms
which can be absorbed. We have

(4.19) [ ceo @) == [ o, @) 0) ()
=— / (COy (kv + ksyv — kau + ks) v) (Co 1)
R
= / v?ky (0,¢%0%7 1) +/ yv?ks (0,¢*v*7 1)
R R
A S
R R

The first integral on the right satisfies

)

2

)

[t 0, ) | = | [ (k) (@) 2 [ (cp) (@27
R R R

and just after (4.7) in subsection 4.1, we showed that the first integral here satisfies

c
/R(gkw?) (CO,0° 1) 5/72}(vﬁ}2+0a/72k‘@9y1}ﬁ‘2

c c ,
—Rf/ |§8Iv5|2+—A2R§/ ‘fvﬁ_i
Q@ R « R

IN

IN

2
+Ca/ k [¢O0°
R

2

)
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since 0 < ¢ < k < Cv~! on the support of (,, while the second integral is at most
2
c/ k2 |¢, 0| < CA/ ev?=
R R
Using the inequalities |ks| < Ck2, |ks| < Ck and |ks| < Ck=, we can show similar

estimates for the remaining terms in (4.19), and then absorbing the relevant terms
into the left side of (4.18) yields

[ (o "+ ko) <o) 42 [ Jeo=]

Using the one-dimensional Poincaré inequality again, we conclude that

/ |C’Uﬁ}2 SCR%/ ’81/’(’05’2 SCR%/ |C8$UB|2+CR%/ |vag|2 SC(B)R%AQ/ ’S’Uﬁ—% 2
R R

Applying this with successively 8 = 2,8, ..., 12 we obtain that J= |§v3}2 <C H%w”io
We now wish to show the analogue of the third line in (4.3). As in (4.9) we

estimate
@20) [ (10 €V +110, €Tl + [ (100 CTm)P + k10, (COn0)l).

In order to apply Corollary 2.7, we need |0.k| + |0yk| < Ck2. From (4.13) and
lul> < Cv < Ck™!, we see that thlb in fact holds provided |k;| < Ck¥® with
d(i) =3 fori=2and 3, 1fori=4, 1 for i =5 and 1. This allows us to complete
the estunatlon of all terms which result from Corollary 2.7, except the main terms
involving Lu and Lv. To estimate these main terms, we begin by using

Lu = -0, {kzlv + kouv + k3 (2v + yuv) + k4kzvz} ,
Ly = =0, {k2v2 + kayv? — kquv + k5v} ,
to obtain
/ (ConLu) (Conu) = — / (COndy {k1v + kouv + k3 (zv + yuv) + kakv?}) ((Onu)
" _ ey 111"
and
/R (ConLw) (Comv) = — /72 (¢ono, {ngQ + ksyv?® — kquv + ksv}) (¢COnv)

— IV IIY 4 IITY,
where the decompositions into I + IT*+IIT* and I+ 11V +III? are as in (4.10),
now forming a commutator for each dyk;. We have

= [ comi @,c0m) + [ (Omue) k2 (0,c0m)
R R
—I—/ (COn (zv + yuv)) ks (8y(877u)+/ (COnv®) kak (8,¢Onu)
R R

and

o= / (COnv®) k2 (9,¢0n) / (Conyv?) ks (8,Cono)
R

/ (COnuw) ky (0,COn) / (COnw) ks (9yCOnv) .
R R
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To handle these terms, we note that a\/anganu and a\/ang“@nv have L? norms
that can be absorbed into (4.20) for sufficiently small «. We can also absorb the
L? norms of terms of the form é( Onu and %C Onv by using the Poincaré inequality
in one variable. Finally, we see that all of the above terms can be handled with our
hypotheses on k; by manipulations of the form

(Onv® = 2v (CAnw) — ¢ (In) v*,
and
3yC877U = [ayv ga?ﬂ U — [8Ia 4877] v+ 8IC377U,

where we have used yu = 9,v. For example, the first equality renders the first
integral on the right side of IV tractable as follows:

] [ Gom?) b 0,0m)| < ] [ Cotcom) i 0,c0m) +] [ (¢ @n)?) ks (0,0m)
R R R
< / (2v|¢anvl) k2 10,C0nv] + / ¢ (@) 02| k¥ (8,
R R
<

/ (2(¢anw]) k¥ 10,C0nv] + / ¢ (On) vl k¥ 10,C0m]
R R

Here we can absorb Hkéayg 877UH , and then use Poincaré in one variable to absorb
L

|COnv]| 2, and finally note that || (On)v| - is under special control. The second
identity renders the third integral on the right side of IV tractable as follows:

/ (COmuv) ka (8,C0mw) = / (COmuv) ka (18, O] w)
R R

= [ (comuw) b (02 om0 + [ (GO b (@s0m).
R R
Each of the terms
[0y, COn] u = ¢, Onu + (Onyu and [0, (On]v = (,0nv + (On,v

lies in L? wunder special control since du = 0,0w € L? under special control by
(4.16) and (4.17), and (, and 7, are supported where k > ¢ > 0. Moreover 9,(Inv
has L? norm that can be absorbed into (4.20). Then we can use

/|(§8mw)k4|2 < /|(C8nu)vk\2+/ |(COnv) uk|® + TUSC
R R R

IN

2 2
C’/R|(C8nu)\ +/Rl€|(4877v)| + TUSC

IA

2 2
C /R I(COumow)* + /R k|(Conv)|? + TUSC.

Thus by (4.16) and (4.17) all of the terms in I and IV are now under special control.
The type II1 terms are given by

i = /R (COmu) ke (C,0mu) + /R(Ca”““)]€2 (¢, 9m)

+/ (€O (zv + yuw)) ks (¢, 0nu) +/ (COnv®) kak (¢, 0mu)
R R
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and

mnr = /R(Camﬂ) ko (¢, 0mu) + /R(CanyUQ) ks (G, 0n)

—L/w(Canuv)k4(éy3UUJ<+w/‘(Canv)k5(4y3WU),
R R

and are handled in similar fashion to the type I terms.

We now turn to the type I terms, which require the hypotheses |k;;| < Ck2
for 2 < 4,5 < 5. Since by the hypothesis (1.10) we already have |k;| < Ck for
2 < j <4, it follows from (1.6) as before that if ck; < k, then

(M

c|Vkj| = |VEk = V (k — ck;)| < |VE| + |V (k — ck;)| < CVE + Cy/(k — ck;) < Ck

for 2 < j < 4. Thus |ks5| < Ck? is the only second derivative estimate that must
be assumed in the hypotheses. We begin with the identities

[k0,,m0¢%] = kn,0¢% + knd2¢¢, —n¢® (9k;)

for 1 <i,j < 5. We will write II* = II% + IIjs + II&, IT% = Y IT% and

11y = 2?22 IT}  etc. with the obvious meanings. We have

1y = /vAﬁmH—/ uvAganu—i—/ (zv—i—yuv)Aganu—i—/ kv? Ay0nu
R R R R

/vk1ny8C28nu+/ uvkgny8C28nu
R R

+/ (zv + yuw) kgnyGCQGnu +/ kv2k477y8§2877u
R R

and these terms can be decomposed into terms that are either under special control,
or can be absorbed into (4.20) after applying the Poincaré inequality in one variable.
Indeed, since du = 0,0w, we have 9(Onu = 0,(In (0w) modulo terms of the
form J,u, Oyu, O,v and O,v with appropriate cutoff functions included, and terms
involving only w, v or w with cutoff functions. Now the terms of the form J,u
and dyu = d,v have L? norm under special control since the integrals in (4.14) are
under special control. The remaining term dyv can be absorbed into (4.20) after
applying the Poincaré inequality in one variable so as to obtain the L? norm of
9,0,v (with cutoff functions) multiplied by R%. Finally the main term 9,(dn (Ow)
has L? norm that can be absorbed into (4.20) if multiplied by a sufficiently small
o. Similarly the term [T} is under special control.
Turning to the term I1# we have

1

/UC’ﬁmH—/ qu’28mL+/ (zv+yuv)03877u+/ kv?Cyonu
R R R R

/ o3 (8k1)8y877u+/ uvn(? (Okz) 0,0nu
R R

+ / (zv + yuv) n¢? (Oks) 8, Onu + / kv?n¢? (0ky) 0,0mu.
R R



46 ERIC T. SAWYER AND RICHARD L. WHEEDEN

We now need the second derivatives,
Ozk; = Oukj(w,w,m 2,y) = kj1 + kjou + kj3 (2 + yu) + kjskv,
ayk] = aykj (l’, w,rT, 2, y) = kaU + ]C]‘3y’l) — kj4u =+ kj5-

Considering first the case 0 = 0,,, we compute

/vClanu:/ onc? (Oxk1) OyOnu
R R

I1g,

/ anQ (ku)@yanu—k/ an2 (k12u) 0y 0nu
R R

+/ m)§2 (K13 (z+yu))8y877u+/ an2 (k14kv) 0, 0nu.
R R

Now since dyu = 0,v, we can write as above (9y,0nu = 0,(0nv modulo terms
either with L? norm under special control, or that can be absorbed into (4.20) after
applying the Poincaré inequality in one variable. Since the term 0,(Onv has L?
norm that can be absorbed into (4.20) if multiplied by a sufficiently small «, and
vl 6 is under special control, we see that we need |k;j| < C to obtain that IT¢,
is under special control. Similarly, we have II¢, is under special control for all ¢
provided |k;;| < C. This completes the proof that I1% is under special control in
the case 9 = 0,.
Turning now to the case d = d,, we compute

IIg, = /vC’lﬁnu:/ wn¢? (0yk1) 9,0nu
R R

/ anQ (k12v) OyOnu + / vn§2 (k13yv) 0yOnu
R R

—/ vn¢® (k’14u)8y877u+/ n¢? (ki) 0, 0nu.
R R

Again we can write (8,0,nu = 8,(d,nv modulo terms either with L? norm under
special control, or that can be absorbed into (4.20) after applying the Poincaré in-
equality in one variable. Since the term 9,(d,nv has L? norm that can be absorbed
into (4.20) if multiplied by a sufficiently small o, we see that 11 is under special
control since [|{v|| ¢ is. Similarly, we have 1§, is under special control for all £
provided |k;;| < C. This completes the proof that I1% is under special control in
the case 0 = 0.

We now investigate the corresponding estimates for I1%, 113 and I1%. We have

/’U2A25'T]U+/ vaAganvf/ uvA48mz+/ vAs0nv
R R R R

/vzkgny8C28nv+/ vakzgny8§28m}
R R

Iy

7/ uvk4ny3C23nv+/ vkzsny8§28nv.
R R

Now vkACOnv can be absorbed into (4.20) if multiplied by a sufficiently small a,
kv < C, &v lies in L? under special control, and the L? norm of (Onv can be
absorbed using Poincaré’s inequality in one variable. Thus we see that we need
ko| < Ck3, |ks| < CkZ, |ks| < Ck and |ks| < Ck? in order to have IT4 under
special control. Similarly the term 1} is under special control.
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Turning to the term I1¢ we have

I = /U2028771;+/ vaC'gamzf/ qu’487711+/ vCs0nv
R R R

R

= [ o @ke) 0,00+ [ penc? (@hs) 0,0m
R R

7/ uvnC? (Oky) ayam+/ vn¢? (Oks) 0, 0nu.
R R
We recall the second derivatives,

Ozk; = Oukj(w,w,m 2,y) = kj1 + kjou + kj3 (2 + yu) + kjskv,
ayk] = aykj (l’, w,r, 2, y) = kaU + ]C]‘3y’l) — kj4u + kj5-

Considering first the case 0 = 0., we compute
I1g, = / v2Chdnu = / v2n§2 (Ozk2) 0y, 0nv
R R
= [ o ) 2,00+ [ ve? (k) 0,00
R R

+/ v*n¢? (kas (Z+1/U))3y377@+/ v*n¢? (kaakv) 0,0n.
R R

Now ¢0,0;nv = 0,(0,nv modulo a term that is under special control by (4.16) since
it is supported where k > ¢ > 0. Since 9,(d,nv has L? norm that can be absorbed
into (4.20) if multiplied by a sufficiently small «, and since ||£v]| s is under special
control, we see that I, is under special control. Similarly, we have I1¢, is under
special control for all ¢ provided |k;;j| < C. This completes the proof that I is
under special control in the case that 0 = 0.

Turning now to the final case 0 = 9,, we compute

II¢, = /U202317U:/ v2n¢? (0, k2) 9, 0nv
R R
= /U277C2 (kggv)8y8nv+/ v2n¢? (kazyv) 0,0mv
R R

—/ v2n¢? (kagu) 8, 0nv +/ v2n¢? (kas) 8,0nv.

R R

This time we need an additional factor of vk to go with 0,¢0ynv so that \/anc Oynu
has L? norm that can be absorbed into (4.20) if multiplied by a sufficiently small
a. Since |[€v]|,6 is under special control, we see that we only need |ko;| < Ck? for
2 < j <5 in order to have [ IgQ under special control. As mentioned above, these
follow from our assumption that |ky| < Ck2- Similarly, we have I I¢, under special
control for i = 3,4,5 if |k;;| < Ck? for 2 < i,j < 5. Again, this follows from our
assumptions on ko, ks, and k4, with the exception of |ks5| < Ck%, which is part
of the hypotheses. This completes the proof that I14 is under special control in
the case @ = 0y, and with this, the proof that the main terms in the application
of Corollary 2.7 to (4.20) are under special control. The remaining terms are easier
to handle, and then just as in the previous section, we conclude that ||(u||;. and

||Cv]| .~ are under special control. Theorem 1.2 now completes the proof of Theorem
1.3.
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