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Abstract

We study interior regularity of weak solutions of second order linear di-
vergence form equations with degenerate ellipticity and rough coefficients. In
particular, we show that solutions of large classes of subelliptic equations with
bounded measurable coefficients are Hölder continuous. We present two types
of results dealing with such equations. The first type generalizes the celebrated
Fefferman-Phong geometric characterization of subellipticity in the smooth
case. We introduce a notion of Lq-subellipticity for the rough case and develop
an axiomatic method which provides a near characterization of the notion of
Lq-subellipticity. The second type deals with generalizing a case of Hörman-
der’s celebrated algebraic characterization of subellipticity for sums of squares
of real analytic vector fields, namely the case of diagonal vector fields. In this
case, we introduce a “flag condition” as a substitute for the Hörmander commu-
tator condition which turns out to be equivalent to it in the real analytic case.
The question of regularity for quasilinear subelliptic equations with smooth
coefficients provides motivation for our study, and we briefly indicate some
applications in this direction, including degenerate Monge-Ampère equations.

Key words and phrases: regularity, subelliptic equations, rough coefficients,
commutator condition, control distance

Subject classification numbers (2000): 35B65, 35D10, 35H20

Original submission date: December, 2003.

Overview

This paper is concerned with regularity of solutions to rough subelliptic equations.
Historically, the regularity of weak solutions to second order linear partial differential
equations has been reasonably well understood in two cases:

• when the equation is subelliptic, and the coefficients are restricted to being
smooth,

• when the equation is elliptic, and the coefficients are quite rough.
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In the subelliptic case, there are two main types of result. First, there is the
algebraic commutator criterion of Hörmander for sums of squares of smooth vector
fields. These operators have a special “sum of squares” form for the second order
terms, but no additional restriction on the smooth first order term. Second, there
is the geometric “control ball” criterion of Fefferman and Phong that applies to
operators with general smooth subelliptic second order terms, but the operators are
restricted to be self-adjoint.
In the elliptic case, De Giorgi-Nash-Moser theory applies to equations in diver-

gence form with bounded measurable coefficients. The minimal regularity assump-
tions on the coefficients in this theory make it well suited for applications to elliptic
quasilinear equations.
In this paper we initiate a unified treatment of the subelliptic case when the coef-

ficients are also rough, with a view to obtaining a theory sufficiently rich to apply to
subelliptic quasilinear equations. Our methods involve a merging of techniques used
by De Giorgi-Nash-Moser, Fefferman-Phong, Hörmander and Franchi, and result in
an analogue of the Fefferman-Phong theorem for rough coefficients, and an analogue
of the Hörmander theorem for diagonal vector fields with rough coefficients.
Much remains to be done in these areas however. For example, there are no

results of the Fefferman-Phong type including general first order terms, save for the
special case of the degenerate heat equation. Moreover, the case of sums of squares of
non-diagonal subelliptic vector fields with rough coefficients is far from understood
except in the simplest subelliptic situations. Finally, the case of degenerate subelliptic
operators, where the degeneracy is measured by a weight as well as by a subelliptic
geometry, leads to theories that do not apply to operators with general lower order
terms, and this case has not been pursued here.

1 Introduction

The point of departure for this work consists of three papers: L. Hörmander [21], C.
Fefferman and D. H. Phong [7] and B. Franchi [8]. In [21], Hörmander obtained hy-
poellipticity, actually subellipticity, of sums of squares of smooth vector fields whose
Lie algebra spans at every point. In [7], Fefferman and Phong considered general
nonnegative semidefinite smooth linear operators, and characterized subellipticity
in terms of a containment condition involving Euclidean balls and ”subunit” balls
related to the geometry of the nonnegative semidefinite form associated to the oper-
ator. The problem of extending these results to include nonlinear operators requires
an understanding of subellipticity for linear operators with nonsmooth coefficients,
generally as rough as the weak solution. Some nonsmooth degenerate elliptic cases
when the eigenvalues all vanish at the same rate were investigated in Fabes, Kenig
and Serapioni [6], using A2 weights or quasiconformal maps and the Euclidean met-
ric to control the degeneracy. The first treatment of a nonsmooth subelliptic case
occurred in Franchi and Lanconelli [9], and in greater generality, later in Franchi [8],
which we now describe in more detail.
Franchi considered a collection X = {Xj}nj=1 of diagonal Lipschitz vector fields

Xj = aj (x)
∂
∂xj
, 1 ≤ j ≤ n. Assuming a strong form of a reverse Hölder inequality

involving integral curves of vector fields in the span of X , and the subunit balls
B of Fefferman and Phong, Franchi established a subrepresentation inequality for
Lipschitz functions f similar to, but slightly weaker than,

|f (x)− fB | ≤ C
]
B

|Xf (z)| δ (x, z)

|B (x, δ (x, z))|dz, x ∈ B, (1)

where δ is the subunit metric of Fefferman and Phong. From such subrepresentation
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inequalities, it is possible in many cases to deduce Sobolev and Poincaré inequalities
for Lipschitz functions, as well as Harnack inequalities and Hölder continuity of weak
solutions to rough equations.
There has recently developed a vast literature dealing with these matters, pro-

pelled in large part by the aforementioned works, as well as the pivotal papers of L.
Rothschild and E. Stein [36], D. Jerison [22], A. Nagel, E. Stein and S. Wainger [33]
and many others. These latter papers deal mainly with smooth vector fields satis-
fying Hörmander’s condition. For example, it was shown in [33] that the underlying
metric space is a homogeneous space, and in [22], a Poincaré inequality was derived,
with subsequent improvements by G. Lu in [25], [26]. In this paper, we shall be con-
cerned with both the general setting of rough nonnegative semidefinite operators, as
well as the special case of operators arising from rough diagonal vector fields. Due to
the large collection of papers in these areas, we will only mention work with a direct
impact on our development, and for a more complete history, we refer the reader to
the recent papers [19] and [12] and the references given there, some of which we will
discuss in more detail below. See also [24], [27], [28] and references given there, for
further results on subrepresentation inequalities. We also refer the reader to [46] for
an adaptation of the Morrey-Campanato method to “rough elliptic” sums of smooth
vector fields satisfying Hörmander’s condition. See also the limitations of this method
discussed at the end of subsection 1.3 below and in Appendix A.5 of [34]. Finally,
some nonsubelliptic equations are treated in [38], [39], [40] and [35].
We will extend the characterization of subellipticity by Fefferman and Phong in

[7] to a near characterization in the rough case (Theorem 6 and Theorem 7), and
building on ideas of Franchi in [8], we will use this result to obtain an extension of
Hörmander’s theorem [21] to operators with quadratic forms comparable to a sum of
squares of rough diagonal vector fields (Theorems 9, 13 and 15). The general case of
nondiagonal rough vector fields will be considered in a subsequent paper.
We begin by recalling Hörmander’s celebrated theorem on hypoellipticity of sums

of squares of smooth vector fields ([21]): Suppose

Xc =
n[
i=1

aic (x)
∂

∂xi
, 0 ≤ c ≤ m,

is a collection of smooth vector fields in a domain Ω ⊂ Rn satisfying the following
commutation condition.

Definition 1 The vector fields {Xc}mc=0 satisfy the commutation condition in Ω if
for every x ∈ Ω, there is p ∈ N such that the linear span of the vector fields Xc and
their commutators up to order p,

span
�
Xc1 , [Xc1 ,Xc2 ] , [Xc1 , [Xc2 ,Xc3 ]] , ...,

�
Xc1 ,

�
Xc2 ,

�
...
�
Xcp−1 ,Xcp

�
...
���

: 0 ≤ cj ≤ m
�
,

is equal to Rn.

Then the linear operator

L = X0 +
m[
c=1

X 3cXc

is hypoelliptic in Ω, i.e. a distribution u is smooth in any open set in which Lu is
smooth. The commutation condition 1 is essentially necessary; in particular it holds
when the coefficients aic (x) are real-analytic and L is hypoelliptic. The conclusion

4



of Hörmander’s theorem can be strengthened to show that L is subelliptic, where in
the case L = ∇3B (x)∇ is self-adjoint, we say L3 is subelliptic in Ω if there is ε > 0
such that ]

Re (uLu) + C nun2L2 ≥ c nun
2
Hε , (2)

for all u ∈ C∞c (Ω), where Hε denotes the usual Sobolev space of functions with
ε derivatives in L2. A classical result is that subellipticity implies hypoellipticity.
Observe that if Xc =

Sn
i=1 aic (x)

∂
∂xi
, then

Sm
c=1X

3
cXc = ∇3B (x)∇ where B (x) =

[bij (x)]
n
i,j=1, bij (x) =

Sm
c=1 aic (x) ajc (x). The principal symbol of the operator

L = X0 +
Sm

c=1X
3
cXc is by definition

m[
c=1

(Xc · ξ)2 =
m[
c=1

#
n[
i=1

aic (x) ξi

$2
= ξ3B (x) ξ, (3)

A characterization of subellipticity for more general, but self-adjoint, smooth
operators L = ∇3B (x)∇ has been given by Fefferman and Phong in [7]. Given a
smooth nonnegative semidefinite matrix B (x) defined in Ω, they use the metric

δ (x, y) = inf {r > 0 : γ (0) = x,γ (r) = y,γ is Lipschitz and subunit} (4)

on Ω, often referred to as the Carnot-Carathéodory distance, or control distance,
where a Lipschitz curve γ : [0, r] → Ω is subunit (with respect to the matrix B (x),
or its associated operator L) if

(γ3 (t) · ξ)2 ≤ ξ3B (γ (t)) ξ, a.e. t ∈ [0, r] , ξ ∈ Rn.

Then L = ∇3B (x)∇ is subelliptic in Ω if and only if the δ-ballsK (x, r) = {y ∈ Ω : δ (x, y) < r}
satisfy an ε-comparability condition with Euclidean ballsD (x, r) = {y ∈ Ω : |x− y| < r}:
for every compact subset K of Ω, there are positive constants C, r0 and ε such that

D (x, r) ⊂ K (x,Crε) , x ∈ K, 0 < r ≤ r0. (5)

We now wish to consider quasilinear equations of the form

Lu ≡ ∇3B (x, u (x))∇u = f (x, u (x) ,∇u (x)) , (6)

where f (x, z,p) ∈ C∞ (Ω×R×Rn), B (x, z) = [bij (x, z)]
n
i,j=1 ∈ C∞ (Ω×R) and

the quadratic form ξ3B (x, u (x)) ξ is nonnegative semidefinite. We will also consider
the special case

c
m[
c=1

(Xc (x, u (x)) · ξ)2 ≤ ξ3B (x, u (x)) ξ ≤ C
m[
c=1

(Xc (x, u (x)) · ξ)2 , (7)

where the nonlinear vector fields Xc (x, u (x)) arise from vector fields

Xc (x, z) =
n[
i=1

aic (x, z)
∂

∂xi
, 1 ≤ c ≤ m,

with coefficients aic (x, z) ∈ C∞ (Ω×R). In order to obtain regularity results for
such equations, it is necessary to treat the linearized operators hL = ∇3 hB (x)∇ with
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coefficients hB (x) = B (x, u (x)) generally as rough as u (x). In the elliptic case, there
exist positive constants c, C such that

c |ξ|2 ≤ ξ3B (x, u (x)) ξ ≤ C |ξ|2

(in Definition 1, this occurs when p = 1; the vector fields {Xc}mc=1 then span Rn at
each point of Ω), and then the results of De Giorgi - Nash - Moser theory can be
applied (see e.g. [30]): If

L = ∇3B (x)∇ =
n[

i,j=1

∂

∂xi
bij (x)

∂

∂xj

where the coefficients bij (x) are bounded and measurable in Ω and satisfy the ellip-
ticity condition

c |ξ|2 ≤ ξ3B (x) ξ ≤ C |ξ|2 , a.e. x ∈ Ω, ξ ∈ Rn,

then all weak W 1,2 (Ω) solutions u to the equation Lu = 0 are Hölder continuous in
Ω. Here W 1,2 (Ω) is the Sobolev space of square integrable functions f on Ω with
square integrable gradients ∇f . A bounded function f is Hölder continuous of order
α on Ω if |f (x)− f (y)| ≤ C |x− y|α for x, y ∈ Ω.
However, in the nonelliptic setting where hB (x) is nonnegative semidefinite (in

Definition 1, the commutation condition fails with p = 1), we must consider linear
operators hL = ∇3 hB (x)∇ with bounded measurable coefficients in Ω and degenerate
nonnegative semidefinite quadratic forms, in particular those satisfying

c
m[
c=1

� hXc (x) · ξ
�2
≤ ξ3 hB (x) ξ ≤ C m[

c=1

� hXc (x) · ξ
�2
, a.e. x ∈ Ω,

where hXc (x) = Xc (x, u (x)) = [aic (x, u (x))]
n
i=1. We obtain regularity results in both

the general and particular settings mentioned above.
First, we obtain an analogue of the theorem of Fefferman and Phong that is valid

for rough operators L = ∇3B (x)∇, with a general nonnegative semidefinite bounded
measurable matrix B (x). Before describing our result, we point out that an example
in Xu [45] shows that the ε in (5) cannot be taken equal to the ε in (2) if B (x) is

not sufficiently differentiable (at least C
1
2(

1
ε−1) is needed). Xu also showed that in

two dimensions, (5) implies (2) with a smaller ε > 0, if B (x) is twice continuously
differentiable. Note however that the notion of subellipticity of order ε in (2) is based
on L2-Sobolev spaces, while the notion of Lq-subellipticity we use in this paper (see
Definition 4 below) is based on Hölder spaces. Roughly speaking, we show that weak
solutions of equations involving L are Hölder continuous for some positive exponent
provided the ε-comparability condition (5) holds, there is a doubling condition on
the balls K (x, r), and certain Poincaré and Sobolev inequalities hold relating the
subunit metric to the degenerate form ξ3B (x) ξ. C. Gutiérrez and E. Lanconnelli
[19] have obtained a special case of this result, which we discuss following Theorem
7 below. The ε-comparability condition (5) often turns out to be necessary in this
rough setting, and the Sobolev and Poincaré inequalities are essentially necessary for
certain related notions of subellipticity for Dirichlet and Neumann boundary value
problems. We also give a version for more general quasimetrics, in place of the subunit
metric, which will see application to regularity of weak solutions for operators L with
principal symbol satisfying (7).
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Second, we obtain an analogue of Hörmander’s theorem for rough vector fields
{Xc}mc=1 in the special case where the vector fields are diagonal, i.e. of the form

{Xc}mc=1 =
�
aj (x)

∂

∂xj

�n
j=1

,

with m = n. We introduce an analogue of Hörmander’s commutation condition
in this setting, called the flag condition, which requires that for each x ∈ Ω and
each index set φ ⊂ I {1, 2, ..., n}, there is j /∈ I such that aj does not vanish
identically on (x+ VI) ∩ N for any neighbourhood N of x in Ω, where Vφ = {0}
and VI = span {ei : i ∈ I}. Roughly speaking, we show that weak solutions of an
operator L = ∇3B (x)∇, whose principal symbol is equivalent to the quadratic formSn

j=1

�
aj (x) ξj

�2
, are Hölder continuous for some positive exponent provided the flag

condition holds, along with certain reverse Hölder conditions on the coefficients of
the vector fields. The flag condition turns out to be necessary in this rough setting,
and is in fact equivalent to Hörmander’s commutation condition when the vector
fields are analytic. We now consider these theorems in more detail.
We consider operators of the form L = ∇3B (x)∇ =

Sn
i,j=1

∂
∂xi
bij (x)

∂
∂xj

where
the real-valued coefficients bij (x) are bounded and measurable in Ω and the quadratic
form ξ3B (x) ξ is nonnegative semidefinite. We seek conditions on a nonnegative
semidefinite quadratic form

Q (x, ξ) = ξ3Q (x) ξ,

in order that all operators L with principal symbol ξ3B (x) ξ equivalent to Q (x, ξ) are
subelliptic in Ω. To explain this more precisely, we recall the following two definitions
(see Fefferman and Phong [7] and Guan [15]). A vector field T =

Sn
i=1 αi (x)

∂
∂xi
,

with bounded coefficients αi, is subunit with respect to a symmetric nonnegative
matrix B (x) in Ω if#

n[
i=1

αi (x) ξi

$2
≤ ξ3B (x) ξ, a.e. x ∈ Ω, ξ ∈ Rn.

Definition 2 Let 0 < α < 1. A linear operator

L = ∇3B (x)∇ =
n[

i,j=1

∂

∂xi
bij (x)

∂

∂xj

is α-subelliptic in Ω if there is a positive function C (E, z1, z2, z3, z4) defined on
P (Ω) × [0,∞)4 (where P (Ω) is the lattice of compact subsets of Ω), increasing in
each variable separately, such that for all N-tuples T = (T1, ..., TN ) of bounded sub-
unit (with respect to B (x)) vector fields, all bounded functions f,g, and all compact
subsets K of Ω, every weak solution u ∈W 1,2 (Ω) to the divergence form equation

Lu = f +T3g,

satisfies, possibly after redefinition on a set of measure zero,

nunCα(K) ≤ C,

where C = C (K, nun2 , nfn∞ , ngn∞ ,N). Here T3 denotes the transpose of T and

nwnCα(K) = sup
x∈K

|w (x)|+ sup
x,y∈K

|w (x)− w (y)|
|x− y|α . (8)
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Note that the Hölder exponent α measures the gain in smoothness of the weak
solution u (∈ Cα) over the data f and g (∈ L∞ ∼ C0). This gain will clearly depend
on the operator L, but will be independent of the norms nun2, nfn∞ and ngn∞ by
the linearity of the equation: if hu = cu, hf = cf and hg = cg for a nonzero real
number c, then u is a solution to Lu = f + T3g if and only if hu is a solution to
Lhu = hf +T3hg. The norms nhun2, ��� hf���∞ and nhgn∞ can thus be made arbitrarily small

while the Hölder exponent α of hu remains unchanged.
Remark 1 We caution the reader that in subsequent subsections we will strengthen
the above notion of subellipticity for rough linear operators L by requiring the same
Hölder conclusion, but for more general equations with lower order terms and rougher
data. The Hölder exponent α will then depend on the degree of roughness of the data
as well as the norms of the coefficients of the lower order terms, and this will have to
be reflected in the definition of subellipticity. Moreover, as the data f and g will be
permitted to lie in rougher Lebesgue spaces L

q
2 and Lq respectively, the quantity α will

no longer reflect the gain in smoothness of u over the data f and g. Instead, the gain
from f and g will be measured by the quantities 2n

q and n
q respectively, where q is the

optimal exponent such that weak solutions u are Hölder continuous of some positive
order for data f and g in L

q
2 and Lq respectively. Recall that classical fractional

integration of order α maps Lq to Cε if ε = α− n
q > 0.

As a result of these considerations, we will no longer specify the Hölder expo-
nent α as part of the definition of subellipticity of L, but will instead specify the
Lebesgue exponent q of the data, resulting in a definition of Lq-subellipticity for the
operator L in Definition 4 below. We will also define in Definition 5 a notion of
Lq-subellipticity for a nonnegative semidefinite quadratic form Q (x, ξ) = ξ3Q (x) ξ,
which will essentially turn out to be that every rough linear operator L, even with
lower order terms, whose principal symbol is comparable to Q (x, ξ), is Lq-subelliptic.
Finally in Definition 8, we will define a collection of vector fields {Xi (x)}mi=1 to be
Lq-subelliptic if the quadratic form Q (x, ξ) =

Sm
i=1 (Xi (x) · ξ)

2 associated to the
operator L =

Sm
i=1Xi (x)

3
Xi (x) is Lq-subelliptic. In all of these cases, we will refer

to L∞-subelliptic, the weakest of the Lq-subelliptic definitions, as simply subelliptic.

1.1 An extension of the Fefferman-Phong theorem to rough
operators

We extend the definition of the subunit metric δ (x, y) to the case of a continuous
quadratic form Q (x, ξ).

Definition 3 If Q (x, ξ) is a continuous quadratic form on Ω, we define

δ (x, y) = inf {r > 0 : γ (0) = x,γ (r) = y,γ is Lipschitz and subunit in Ω} ,

where a Lipschitz curve γ : [0, r]→ Ω is subunit with respect to Q (x, ξ) if

(γ3 (t) · ξ)2 ≤ Q (γ (t) , ξ) , a.e. t ∈ [0, r] , ξ ∈ Rn.

The function δ : Ω × Ω → [0,∞] is a symmetric metric on Ω since the family of
Lipschitz subunit curves in Ω is closed under concatenation and invariant under time
reversal. If δ is finite on Ω×Ω we define the subunit balls K (x, r) by

K (x, r) = {y ∈ Ω : δ (x, y) < r} , x ∈ Ω, 0 < r <∞.

8



We first consider a general subellipticity theorem that is an analogue of the Fefferman-
Phong theorem for rough operators, but involves a more general quasimetric in place
of the metric of Fefferman and Phong. In order to state our general theorem, we
introduce some notation. A quasimetric d on Ω ⊂ Rn is a finite nonnegative function
on Ω×Ω satisfying

d (x, y) = 0⇐⇒ x = y

d (x, y)≤ κ (d (x, z) + d (y, z))

for all x, y, z in Ω. The quasimetric balls B (x, r) are defined by

B (x, r) = {y ∈ Ω : d (x, y) < r} , 0 < r <∞.

Provided the quasimetric d (x, y) is Lebesgue measurable in the second variable, the
upper and lower dimensions, Q∗ and Q∗, of a quasimetric space with balls B (x, r)
are given by

Q∗ = lim sup
r→0

max
x∈Ω

log |B (x, r)|
log r

, (9)

Q∗ = lim inf
r→0

min
x∈Ω

log |B (x, r)|
log r

.

Provided the balls B (x, r) are contained in Euclidean balls D (x,Ceucr) for some
fixed positive constant Ceuc, which will be the case for all balls considered in this
paper, we have Q∗ ≥ Q∗ ≥ n. Note that for any q∗ > Q∗ and q∗ < Q∗, we have the
estimates

cq∗r
q∗ ≤ |B (x, r)| ≤ Cq∗rq∗ , 0 < r < 1, x ∈ Ω, (10)

for some cq∗ , Cq∗ > 0, which explains the terminology.

Convention Throughout the paper we will have occasion to consider local prop-
erties of balls B (x, r) that require x and r to be suitably restricted. We will
effect these restrictions by taking a sufficiently small positive constant δ and
qualifying our local properties by

x ∈ Ω, 0 < r < δ dist (x, ∂Ω) ,

where dist (x,E) denotes the Euclidean distance from the point x to the set E.
The positive number δ may change from line to line, but we will only indicate
this by a different symbol, such as δ0 or δ

3, if a comparison is necesssary.

We will require the following containment, which for the subunit balls K (x, r) is
essentially necessary for the notion of subellipticity of the form Q that is given in
Definition 5 below: there are positive constants C, ε and δ such that

D (x, r) ⊂ B (x,Crε) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) . (11)

This shows that |B (x, r)| ≥
���D �x, � rC � 1ε���� = cr nε for small r, and hence that Q∗ ≤ n

ε

is finite whenever (11) holds. There is the following partial converse.

Remark 2 If the balls B (x, r) are locally equivalent to their convex hulls coB (x, r),
i.e.

coB (x, r) ⊂ B (x,Cr) , x ∈ Ω, 0 < r < δdist (x, ∂Ω) , (12)

9



for some C, δ > 0, and uniformly bounded for x ∈ Ω, 0 < r < δdist (x, ∂Ω), then the
containment condition (11) is a consequence of the finiteness of the upper dimension
Q∗ (which in turn is a consequence of the doubling condition (13) below). Indeed,
there is a positive definite matrix A with corresponding ellipsoids

E (x, t) = {y ∈ Rn : nA (x− y)n < t} , t > 0,

centred at x, the center of mass of coB (x, r), such that

E (x, r) ⊂ coB (x, r) ⊂ E
�
x, n

3
2 r
�
.

This variant of F. John’s famous result can be found in Gutiérrez ([18] Theorem
1.8.2). If Λ is the largest eigenvalue of A and ρ = Λ−1r, then D (x, ρ) ⊂ E (x, r).
If Cb is a bound for the diameters of the balls B (x,Cr) with x ∈ Ω, 0 < r ≤ 1,
then supx∈Ω,0<r≤1 diam {E (x, r)} ≤ Cb, and so there is a constant C 3b such that
λ−1r ≤ C3b for any eigenvalue λ of A. Thus we have

|coB (x, r)| ≤
���E �x, n 3

2 r
���� = Cnrn (detA)−1 ≤ C3n (C 3b)n−1 ρ.

Now (10) yields cq∗rq
∗ ≤ |B (x, r)| for q∗ > Q∗ and some cq∗ > 0, and altogether we

have
cq∗r

q∗ ≤ |B (x, r)| ≤ |coB (x, r)| ≤ C 3n (C 3b)
n−1

ρ.

Thus the convex hull coB (x, r) of B (x, r) contains a Euclidean ball D
�
x, crq

∗�
with

c =
cq∗

C3n(C3b)
n−1 , and then by (12), D

�
x, c

�
r
C

�q∗� ⊂ coB �x, rC � ⊂ B (x, r).
We will also require the doubling condition

|B (x, 2r)| ≤ C |B (x, r)| , x ∈ Ω, 0 < r <∞, (13)

which makes (Ω, d, |·|) into a general homogeneous space. See the beginning of sub-
section 2.2 for a detailed discussion of such spaces. Note that doubling (13) implies
(18) below for some finite exponent D, which yields Q∗ ≤ D <∞.
We now introduce a bounded nonnegative semidefinite quadratic form Q (x, ξ) =

ξ3Q (x) ξ, where Q (x) is a symmetric matrix for each x ∈ Ω, and define

nU (x)n2Q = Q (x,U (x)) = U (x)
3Q (x)U (x) (14)

for any vector-valued function U (x). The Sobolev inequality we need is: there is
σ > 1 and δ > 0 such that for all balls B = B (y, r) with y ∈ Ω, 0 < r < δ dist (y, ∂Ω),�

1

|B|

]
B

|w|2σ
� 1

2σ

≤ Cr
�
1

|B|

]
B

n∇wn2Q
� 1

2

+ C

�
1

|B|

]
B

|w|2
� 1

2

, (15)

for all w ∈W 1,2
0 (B). In many applications the stronger form of hypothesis (15) holds

without the L2 average of w on the far right. Note that the right-hand side of (15)
is comparable to the normalized Q-Sobolev norm

nwn∗W1,2
Q (B) ≡

�
1

|B|

]
B

�
nr∇wn2Q + |w|

2
�� 1

2

. (16)

Since nwn∗W1,2
Q (B) is at most

s
nQn∞ times the classical normalized Sobolev norm

nwn∗W 1,2(B), we see that 2σ ≤ 2n
n−2 . The Poincaré inequality we need is: there is

10



C0 ≥ 1 and δ > 0 such that for all balls B = B (y, r) and B∗ = B (y, C0r) with
y ∈ Ω, 0 < C0r < δ dist (y, ∂Ω),+

1

|B|

]
B

����w −� 1

|B|

]
B

w

�����2
, 1

2

≤ Cr
�

1

|B∗|

]
B∗
n∇wn2Q

� 1
2

, (17)

for every w ∈ W 1,2 (B∗). In applications to vector fields X = {Xj}nj=1, the Sobolev
and Poincaré inequalities (15) and (17) are typically deduced from a subrepresenta-
tion formula like (1), see e.g. Proposition 56 below, and hence the stronger form of
hypothesis (15) holds without the L2 average of w on the far right. Sharper versions
of (17) are also often available in special cases; see Proposition 56 regarding different
exponents, and see Remark 21 in section 4.4.1 regarding the choice B∗ = B. See
Proposition 36 for yet more on subrepresentation formulas.
We remark that in the case of the Euclidean metric, we have Q (x, ξ) = |ξ|2

and that (15) holds for σ = n
n−2 =

�
n
2

�3
, n ≥ 3. Typically σ = D

D−2 where D is
the doubling exponent for the homogeneous space with balls B (x, r), given in the
inequality

|B (x, r)| ≤ C
�r
t

�D
|B (y, t)| , B (x, r) ⊃ B (y, t) . (18)

See Lemma 55 in subsection 4.2. The following quantity will play the role of ”dimen-
sion” in the sequel:

Q = max {Q∗, 2σ3} ,
where 1

σ +
1
σ3 = 1. Note that 2σ3 = D if σ = D

D−2 , and that D ≥ Q∗, where Q∗
is the upper dimension of the homogeneous space. Thus in the typical case where
σ = D

D−2 , we have Q = D.
The next hypothesis is crucial for Moser iteration, and as we show in Proposition

51 below, holds automatically with p = ∞ for the subunit balls K (x, r), if Q (x, ξ)
is continuous in x and (11) holds for the subunit balls:

D (x, r) ⊂ K (x,Crε) , x ∈ Ω, 0 < r < δ dist (x,∂Ω) . (19)

Similar results for subunit balls, but with δ-Lipschitz cutoff functions instead of
ordinary Lipschitz cutoff functions, have been obtained earlier in [12] and [11] and
will be discussed below. We suppose there are positive constants c, N and δ such that
for each ball B (y, r) with y ∈ Ω, 0 < r < δ dist (y, ∂Ω), there is an accumulating
sequence of Lipschitz cutoff functions

�
ψj
�∞
j=1

on B (y, r) with the following five
properties (E F means that the closure of E is contained in the interior of F ):

supp ψ1 ⊂ B (y, r) ,
B (y, cr) ⊂

�
x : ψj (x) = 1

�
, j ≥ 1

supp ψj+1
�
x : ψj (x) = 1

�
, j ≥ 1

ψj is Lipschitz, j ≥ 1q
1

|B(y,r)|
U ��∇ψj��pQ dxr 1

p ≤ Cp j
N

r , j ≥ 1

, (20)

for some p > 2σ3. Note that 2σ3 ≥ n since 2σ ≤ 2n
n−2 , as we observed following

(15). Thus the condition postulates an accumulating sequence
�
ψj
�∞
j=1

of Lipschitz

cutoff functions with Lp control of
��∇ψj��Q for an exponent p > 2σ3 ≥ n, where

σ > 1 is the gain in the Sobolev inequality (15), uniformly for B (y, r) with y ∈ Ω,
0 < r < δ dist (y, ∂Ω).

11



In the case that the balls B (y, r) are the subunit balls K (y, r), the containment
condition (19) holds and the quadratic form Q (x, ξ) is continuous in x, then the ”ac-
cumulating sequence of Lipschitz cutoff functions” condition (20) holds automatically
with p =∞. Indeed, this follows formally from the following fundamental inequality
relating the subunit metric δ to the corresponding quadratic form Q:

n∇xδ (x, y)nQ ≤
√
n+ C, (21)

where C depends on Q and the inequality holds in the distribution sense provided Q
is continuous and δ is finite on Ω × Ω. Under more restrictive hypotheses, this was
first obtained in Garofalo and Nhieu [12] and Franchi, Serapioni and Serra Cassano
[11]. Using this, or more precisely a Lipschitz approximation to this inequality when
(19) holds, see (176) below, we can employ ordinary cutoff functions ϕ and compose
them with Lipschitz approximations δε to the metric δ to obtain Lipschitz cutoff
functions of the form ψ (x) = ϕ (δε (x, y)) that satisfy

n∇ψnQ ≤ nϕ3n∞ n∇xδ
ε (x, y)nQ ≤

√
n nϕ3n∞ .

See Proposition 51 in section 4 for the details.
Since our methods yield Hölder continuity in more general situations, we will

consider the second order equation with lower order terms,

Lu+HRu+ S3Gu+ Fu = f +T3g. (22)

The equation now involves a second order term Lu with symbol ξ3B (x) ξ, first order
terms HRu+S3Gu and a zero order term Fu, where B (x) is a bounded measurable
nonnegative semidefinite matrix, R = {Ri}Ni=1, S = {Si}Ni=1 and T = {Ti}Ni=1 are
collections of vector fields subunit with respect to B (x); and the operator coefficients
H = {Hi}Ni=1, G = {Gi}Ni=1, F , and the inhomogeneous data g = {gi}

N
i=1and f are

measurable. Our hypothesis on the operator coefficients H, G and F is

nFn
L
q
2 (Ω)

+ nGnLq(Ω) + nHnLq(Ω) ≡ Nq <∞, (23)

for some q > Q. Our hypothesis on the inhomogeneous data f,g is

nfn
L
q
2 (Ω)

+ ngnLq(Ω) ≡ N 3q <∞, (24)

for the same q > Q as in (23), but withN 3q not necessarily the same asNq in (23). The
distinction between Nq and N 3q is made here because the Hölder continuity exponent
α of weak solutions u to (22) will turn out to depend on the gaps 1− Q

p and 1−
Q
q ,

where p is as in (20) and q is as in (23) and (24), as well as Cp in (20) and Nq in
(23), but not on u or N 3q in (24). This is of paramount importance in applications
to nonlinear equations such as (51) - see also [34].
We now wish to capture in a precise way the notion that a bounded nonnegative

semidefinite quadratic form Q (x, ξ) is subelliptic if all operators of the above form,
with principal symbol comparable to Q (x, ξ), are subelliptic operators in the spirit
of Definition 2. First we recall that u is a weak solution of (22) in Ω if u ∈W 1,2

loc (Ω)
and satisfies

−
]
(∇u)3 B∇w +

]
(HRu)w +

]
uGSw +

]
Fuw =

]
fw +

]
gTw,

for all nonnegative w ∈W 1,2
0 (Ω) (equivalently, we could test over all w ∈W 1,2

0 (Ω)).
Note that ∇3 = −div, and that the prime in (∇u)3 refers to transpose of a vector

12



rather than adjoint of an operator. By the Sobolev embedding theorem W 1,2
loc (Ω) ⊂

Lqnloc (Ω) (qn =
2n
n−2 if n ≥ 3 and qn < ∞ if n = 2), the individual integrals above

converge absolutely if (24) and (23) hold with q ≥ n (recall that if the balls B (x, r)
are contained in Euclidean balls D (x,Cr), then Q∗ ≥ Q∗ ≥ n).
For a discussion of alternate definitions of weak solution, and why we focus on

the classical definition in this paper, see subsection 6.7 of the appendix. We now
strengthen the notion of subelliptic operator given in Definition 2.

Definition 4 Let q ∈ [2,∞]. We say that an operator L = ∇3B (x)∇ with bounded
measurable matrix B (x) is Lq-subelliptic in Ω if there are positive functions α =

α (E, z1) and C = C (E, z1, z2, z3) defined on P (Ω) × [0,∞) and P (Ω) × [0,∞)3
respectively, increasing in each variable separately, such that every weak solution u
of (22) in Ω satisfies, possibly after redefinition on a set of measure zero,

nunCα(K) ≤ C, (25)

for

α= α (K,Nq) , (26)

C = C
�
K,Nq, N

3
q, nun2

�
,

whenever K is a compact subset of Ω, (24) and (23) hold, and R = {Ri}Ni=1, S =
{Si}Ni=1 and T = {Ti}

N
i=1 are collections of vector fields subunit with respect to B (x).

We say that the operator L is subelliptic in Ω if it is L∞-subelliptic in Ω.

Definition 5 Let q ∈ [2,∞]. We say that a bounded measurable nonnegative semi-
definite quadratic form Q (x, ξ) is Lq-subelliptic in Ω if every operator L =
∇3B (x)∇ whose matrix B (x) satisfies

csymQ (x, ξ) ≤ ξ3B (x) ξ ≤ CsymQ (x, ξ) , a.e. x ∈ Ω, ξ ∈ Rn, (27)

for positive constants csym and Csym, is Lq-subelliptic in Ω, and provided the positive
functions α and C in (26) can be chosen to depend only on the constants csym and
Csym in (27) and not on L itself, i.e.

α= αcsym,Csym (K,Nq) ,

C = Ccsym,Csym
�
K,Nq, N

3
q, nun2

�
.

We say that the form Q (x, ξ) is subelliptic in Ω if it is L∞-subelliptic in Ω.

Theorem 6 Suppose that Q (x, ξ) is a bounded measurable nonnegative semidefinite
quadratic form in Ω. Let d (x, y) be a symmetric quasimetric in Ω with d (x, y) ≥
c |x− y| for some c > 0, that is Lebesgue measurable in each variable separately, with
upper dimension Q∗, and suppose σ > 1. Then Q (x, ξ) is Lq-subelliptic in Ω for

q > Q ≡ max {Q∗, 2σ3} , 1

σ
+
1

σ3
= 1,

provided that the following hold for the d-balls B (x, r) = {y ∈ Ω : d (x, y) < r}:

1. the doubling condition (13) holds,

2. the containment condition (11) holds,

13



3. the Sobolev and Poincaré inequalities (15) and (17) hold with the given σ,

4. the ”accumulating sequence of Lipschitz cutoff functions” condition (20) holds
for some p > max {2σ3, 4}.

Of course the functions αcsym,Csym and Ccsym,Csym in Definition (5) will depend
on the various constants in the conditions (13), (11), (15), (17) and (20). The proof
of the theorem relies on the Moser iteration method, using the quasimetric d (x, y)
in place of the Euclidean metric |x− y| and is presented in section 3. See Remark
15 in section 3.1 for a discussion of the restriction p > 4 in the fourth condition of
Theorem 6.

Remark 3 If the containment condition (11) is not required in Theorem 6, then
we still obtain Hölder continuity of weak solutions, but with the Euclidean metric
replaced by the quasimetric d in the definition of Cα (K):

nwnCαquasi(K) = sup
x∈K

|w (x)|+ sup
x,y∈K

|w (x)− w (y)|
d (x, y)α

. (28)

This is discussed further in the appendix.

A natural family of balls to consider in connection with Theorem 6 is the family
of balls K (x, r) arising from the subunit metric δ (x, y) associated to a quadratic
form Q (x, ξ) = ξ3Q (x) ξ as in (4) with B (x) replaced by Q (x), provided δ (x, y) is
finite on Ω × Ω. These balls are measurable by Lemma 50 in subsection 4.2. By
Proposition 51, the ”accumulating sequence of Lipschitz cutoff functions” condition
(20) is automatic with p =∞ for the subunit balls K (x, r) in case the form Q (x, ξ)
is continuous in x and the containment condition (19) holds. Thus we have as a
corollary the following theorem that extends the Fefferman-Phong theorem, in that
it comes close to characterizing subellipticity in the rough setting. We remark that
while the subunit metric is well-defined by (4) even in the case when Q (x, ξ) is only
a bounded Borel measurable function of x, it may exhibit pathological properties if
continuity is violated. See Example 37 in section 2.3.1.

Theorem 7 Suppose that Q (x, ξ) is a nonnegative semidefinite continuous quadratic
form in Ω, and suppose that the subunit metric δ (x, y) is finite on Ω × Ω. Let
the corresponding subunit balls K (x, r) have upper dimension Q∗, and suppose that
σ > 1. Then Q (x, ξ) is Lq-subelliptic in Ω for q > Q = max {Q∗, 2σ3} provided that:

1. the doubling condition |K (x, 2r)| ≤ C |K (x, r)| holds for 0 < r <∞,

2. the containment condition (19) holds,

3. the Sobolev and Poincaré inequalities (15) and (17) hold with B (x, r) = K (x, r).

We mention here a special case of Theorem 7 that arises in the work of Gutiérrez
and Lanconelli [19] on quadratic forms arising from rough dilation invariant vector
fields. Assuming a doubling condition and a strong Poincaré inequality relative to a
collection of dilation invariant Lipschitz continuous vector fields {Xj}mj=1, they prove
a Harnack inequality for weak solutions to (22) with H, G, F and g identically zero,
and where the symbol of L is comparable to

Sm
j=1 (Xj · ξ)

2. See the references there
for additional recent work in this general area.
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1.1.1 Almost necessity of the conditions

The second condition in Theorem 7 is necessary, at least in the case that Q (x, ξ)
is continuous and stably subelliptic in Ω. We say that a quadratic form Q (x, ξ) is
stably subelliptic in Ω if the family of forms

Qτ (x, ξ) = Q (x, ξ) + τ |ξ|2 , 0 < τ < 1,

is subelliptic in Ω uniformly in 0 < τ < 1, in the sense that the positive functions
αcsym,Csym and Ccsym,Csym in Definition 5 can be chosen independent of τ . Note
that Qτ is a small elliptic perturbation of Q, hence the terminology. We note that
the conclusions of Theorems 9, 13, 15, 18 and 19 below all persist for stably Lq-
subelliptic in place of Lq-subelliptic, since the hypotheses are not compromised upon
adding τ > 0 to the coefficients of the vector fields. We do not know if there are
quadratic forms Q (x, ξ) that are subelliptic, but not stably subelliptic. The proof
that the containment condition (19) is necessary for stable subellipticity is given in
Proposition 73 of the appendix. Here, let us merely observe that if we ignore the
parameter τ , we can argue formally as follows. If P (x) is a measurable matrix with
P (x)3 P (x) = Q (x) where Q (x, ξ) = ξ3Q (x) ξ, then with y fixed and u (x) = δ (x, y),
the fundamental inequality (21) shows formally that

Lu = T3g =
n[
j=1

T 3jg
3
j

where L = ∇3Q (x)∇ = [P (x)∇]3 [P (x)∇], g = P (x)∇u = (gj)
n
j=1 has bounded

components, and T = P (x)∇ = (Tj)
n
j=1 is a collection of subunit vector fields Tj

with respect to Q (x). Indeed, if Pi (x) denotes the ith row of the matrix P (x), then
for 1 ≤ j ≤ n,

(Tj · ξ)2 ≤
n[
i=1

(Ti · ξ)2 =
n[
i=1

(Pi (x) · ξ)2 = |P (x) ξ|2

= (P (x) ξ)
3
P (x) ξ = ξ3P (x)3 P (x) ξ = ξ3Q (x) ξ.

The subellipticity of Q (x, ξ) then shows that u is Hölder continuous of order α > 0,
and it follows that

δ (x, y) = |u (x)− u (y)| ≤ C |x− y|α ,
which is (19) with ε = α. This proof breaks down since (21) is not generally true
in the ordinary W 1,2 sense, and Proposition 73 establishes the necessity of (19) for
stable subellipticity by using the Lipschitz approximation (176) in place of (21). We
note however, that for the alternate notion of weak solution discussed in subsection
6.5 of the appendix, the distributional inequality (21) of [12] and [11] often suffices.
In certain cases when Q is a sum of squares, such as in the next section, we can show
the necessity of the containment condition (19) for mere subellipticity, rather than
stable subellipticity, of Q (see Proposition 74 in the appendix).
We turn now to the third condition in Theorem 7. We are unable to demonstrate

its necessity for Lq-subellipticity, but will show that it is a reasonable assumption by
demonstrating its necessity for certain notions of subellipticity related to Dirichlet
and Neumann problems for the balls B (x, r). Indeed, the Sobolev inequality in
the third condition in Theorem 7 is almost necessary for the following variant of
the notion of Lq-subellipticity. We say that Q (x, ξ) is Lq-subelliptic relative to the
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homogeneous Dirichlet problem for the balls B (x, r), if we assume existence of weak
solutions to the homogeneous Dirichlet problem for the balls B = B (x, r),�

Lu= f in B
u = 0 on ∂B

,

where L = ∇3Q (x)∇ is the operator with symbolQ (x, ξ) = ξ3Q (x) ξ and f ∈ L q
2 (B)

(in analogy with the elliptic case as treated in Chapter 8 of [14]), and if we also
assume the following global boundedness estimate for these weak solutions to the
above Dirichlet problem,

sup
z∈B

|u (z)| ≤ C
�]

B

|f |
q
2

� 2
q

(in analogy with Theorem 8.16 of [14] in the elliptic case). We are being deliberately
vague regarding the precise definition of these weak solutions, since we have not yet
obtained positive results in this direction (we conjecture that there is a definition of
weak solution such that Q (x, ξ) is Lq-subelliptic relative to the homogeneous Dirich-
let problem for the balls B (x, r) under the hypotheses of Theorem 7 - see subsection
6.7 of the appendix). However, these and related properties have been obtained in
some cases in Gutiérrez and Lanconelli [19] - see Theorem 3.1 and Proposition 2.4
there1. We prove in Lemma 75 of the appendix that the Sobolev inequality (15)
with σ = q

q−2 is necessary for the L
q-subellipticity of Q (x, ξ) relative to the homo-

geneous Dirichlet problem for the balls B (x, r) (in the classical W 1,2 weak sense),
provided 2 < q < Q∗, where Q∗ denotes the lower dimension of the balls B (x, r)
(Q∗ ≥ n if B (x, r) ⊂ D (x,Cr)). Note that the Sobolev inequality (15), together
with the other hypotheses of Theorem 7, implies that Q (x, ξ) is Lq-subelliptic for
q > max {Q∗, 2σ3}. Thus in the special case where the upper and lower dimensions
Q∗ and Q∗ coincide with 2σ3 (this is the case for the homogeneous groups in sec-
tion 5 of Chapter XIII of Stein [42]), the Sobolev inequality (15) with σ = Q∗−ε

Q∗−ε−2
and B (x, r) = K (x, r) is necessary for LQ∗−ε-subellipticity of the form Q, and the
Sobolev inequality (15) with σ = Q∗+ε

Q∗+ε−2 and B (x, r) = K (x, r) is sufficient for the
LQ∗+ε-subellipticity of Q for ε > 0 arbitrarily small, provided conditions 1 and 2 of
Theorem 7 are in force. The questions of global boundedness, and existence of weak
solutions to degenerate Dirichlet problems, whose study has been initiated in [19],
will be taken up in a subsequent paper.
The Poincaré inequality in the third condition in Theorem 7 is almost necessary

for a variant of the notion of hypoellipticity. We say that Q (x, ξ) is L2-hypoelliptic
relative to the homogeneous Neumann problem for the balls B (x, r), if we assume
existence of weak solutions to the homogeneous Neumann problem for the balls B =
B (x, r), �

Lu = f in B
nQu= 0 on ∂B

, (29)

where L = ∇3Q (x)∇ is the operator with symbol Q (x, ξ) = ξ3Q (x) ξ, the boundary
differential operator is nQ = n3Q (x)∇ where n is the unit outward normal to ∂B,
and f ∈ W 1,2 (B) satisfies the compatibility condition

U
B
f = 0; and if we also

assume the following natural hypoelliptic estimate for these weak solutions to the
above Neumann problem:

nunL2(B) ≤ Cr2 nfnL2(B) . (30)

1One of our students, Scott Rodney, has obtained positive results in these directions as well.
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Inequality (30) postulates zero gain in smoothness for u from f , which accounts for
the terminology hypoelliptic. Again, we are being deliberately vague regarding the
precies definition of weak solution to (29). However, we remind the reader that the
classical meaning of weak W 1,2 solution to the boundary value problem (29) is

−
]
B

(∇v)3Q∇u =
]
B

vf, for all v ∈W 1,2 (B) . (31)

Note that the test functions v in (31) do not necesssarily vanish at the boundary of
B. This weak definition is of course motivated by the divergence theorem]

∂B

vnQu=

]
∂B

[vQ (x)∇u] · n =
]
B

div [vQ (x)∇u] (32)

=

]
B

(∇v)3Q (x)∇u+
]
B

vLu,

valid for u ∈ C2
�
B
�
and v ∈ C1

�
B
�
(see e.g. (8.96) in [14] for a discussion of mixed

boundary value problems). Note that the compatibility condition
U
B
f = 0 follows

from (31) with v ≡ 1. We prove in Lemma 76 of the appendix that the Poincaré
inequality (17) is necessary for L2-hypoellipticity of Q relative to the homogeneous
Neumann problem for the balls B (x, r) (in the classical W 1,2 weak sense). The
existence of weak solutions to degenerate Neumann problems, and the corresponding
estimates, will be taken up in a subsequent paper.

1.2 Extensions of Hörmander’s theorem to rough operators
Now we consider extending Hörmander’s commutation theorem to rough vector fields
in the diagonal case. Suppose that the operator L = ∇3B (x)∇ satisfies (27), i.e.

csym

n[
j=1

�
aj (x) ξj

�2 ≤ ξ3B (x) ξ ≤ Csym
n[
j=1

�
aj (x) ξj

�2
, x ∈ Ω, ξ ∈ Rn, (33)

where aj (x) is nonnegative and continuous on Ω. We seek conditions on the weights
aj (x) in order that any operator L = ∇3B (x)∇ satisfying (33) is subelliptic in Ω
according to Definition 4.

Definition 8 Let q ∈ [2,∞]. A collection X = {Xj}mj=1 of vector fields is Lq-
subelliptic in Ω if the quadratic form Q (x, ξ) =

Sm
j=1 (Xj (x) · ξ)

2 (the principal
symbol of

Sm
j=1X

3
jXj) is L

q-subelliptic in Ω according to Definition 5. We say that
the collection X = {Xj}mj=1 of vector fields is subelliptic in Ω if it is L∞-subelliptic
in Ω.

Subellipticity problems for rough vector fields have been considered previously in
Franchi [8] and Franchi and Lanconelli [9], as well as elsewhere (see [19] and [12] and
the references given there). The theorems obtained in [8] and [9] involve conditions
on integral curves or apply to special choices of aj (x), except in two dimensions
where some of our results essentially coincide with those in [8]. See below for a more
detailed discussion.

1.2.1 Diagonal Lipschitz vector fields

Using Theorem 6, we can obtain a general subellipticity theorem for a collection of
diagonal Lipschitz vector fields X = {Xj}mj=1 that are adapted to a homogeneous
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space B of balls (Definition 26) in the sense that the coefficients of the vector fields
are sufficiently large compared to the corresponding side lengths of the balls. We now
introduce some specialized terminology necessary to state a version of this result. A
precise and sharper statement is given in Theorem 61 below when the definition of a
prehomogeneous space (Definition 28) is available.
Let B = {B (x, r) : x ∈ Ω, 0 < r <∞} be a homogeneous space on Ω and let hB be

the collection of smallest closed rectangles

hB (x, r) = n\
k=1

[xk −Bk (x, r) , xk +Bk (x, r)]

containing B (x, r). We say that B is Ω-locally equivalent to hB if there are constants
δ > 0 and C ≥ 1 such that

B (x, r) ⊂ hB (x, r) ⊂ B (x,Cr) , B (x, r) ∈ B with x ∈ Ω, 0 < Cr < δ dist (x, ∂Ω) .

More generally, we say two families Bj = {Bj (x, r) : x ∈ Ω, 0 < r <∞} for j = 1, 2
are Ω-locally equivalent if there are constants δ > 0 and C ≥ 1 such that

B1 (x, r)⊂B2 (x,Cr) and B2 (x, r) ⊂ B1 (x,Cr)
for x ∈ Ω, 0 < Cr < δ dist (x, ∂Ω) .

Given a collection X = {Xj}mj=1 of vector fields on Ω,

X1 =
∂

∂x1
,X2 = a2 (x)

∂

∂x2
, ...,Xn = an (x)

∂

∂xn
, (34)

let

Aj (x, t) =

] t

0

aj (x1 + s, x2, . . . , xn) ds, 1 ≤ j ≤ n,

provided the segment joining x and x+ (t, 0, ..., 0) lies in Ω. We say the vector fields
X = {Xj}mj=1 are adapted to the homogeneous space B if

C−1 ≤ B1 (x, r)
r

≤ C, B (x, r) ∈ B with x ∈ Ω, 0 < r < δ dist (x,∂Ω) ,

and if, for every 0 < α < 1, there is a positive constant ε such that for all balls
B (x, r) ∈ B with x ∈ Ω, 0 < r < δ dist (x, ∂Ω), there is a subset Ω of hB (x, r) with
|Ω| ≥ α

��� hB (x, r)��� and satisfying
Aj (z, r) ≥ εBj (x, r) , for z ∈ Ω, 1 ≤ j ≤ n.

Theorem 9 Assume that ai is nonnegative and continuous for x in Ω, doubling in
x1 uniformly in x2, . . . , xn and Lipschitz continuous in x2, . . . , xn uniformly in x1.
Suppose that the collection of vector fields X = {Xj (x)}nj=1 in (34) is adapted to
a homogeneous space B on Ω that is Ω-locally equivalent to the family hB. Let D
be a doubling exponent for the family B. We either assume that the ”accumulating
sequence of Lipschitz cutoff functions” condition (20) holds for some p > max {D, 4},
or we assume that B is Ω-locally equivalent to the family of subunit balls K. Then X
is Lq-subelliptic in Ω for all q > D.
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The flag condition We now turn to two special and explicit cases of interest in
which we will focus on obtaining conditions of commutation type that guarantee
Harnack inequalities and Hölder continuity of weak solutions. Our approach will be
to construct homogeneous spaces on which our vector fields are adapted, and then to
use Theorems 6, 7 and 9. Recall that for smooth vector fields satisfying Hörmander’s
commutation condition, the control metric was shown to yield a homogeneous space
in [33]. Our substitute for Hörmander’s commutation condition 1 in the case of rough
diagonal vector fields Xj = aj (x) ∂

∂xj
, 1 ≤ j ≤ n, is the following flag condition.

Definition 10 A collection of continuous vector fields Xj = aj (x) ∂
∂xj
, 1 ≤ j ≤ n,

satisfies the flag condition at x ∈ Ω if for each index set I with φ ⊂ I {1, 2, ..., n},
there is j /∈ I such that for any neighbourhood N of x in Ω, aj does not van-
ish identically on (x+ VI) ∩ N where Vφ = {0} and VI = span {ei : i ∈ I}, ei =
(0, ..., 0, 1, 0..., 0) with 1 in the ith position. The vector fields Xj satisfy the flag
condition in Ω if they satisfy the flag condition at every point x ∈ Ω.

Remark 4 An equivalent formulation of the flag condition at x is: there is an in-
creasing sequence of vector spaces

{0} = V0 V1 ...Vj Vj+1 ...Vm = Rn,

and an increasing sequence of index sets

φ 9= I1 ...Ij Ij+1 ...Im = {1, 2, ..., n} ,

such that Vj = span {ei : i ∈ Ij} for 1 ≤ j ≤ n, and ai does not vanish identically
on (x+ Vj) ∩N for any neighbourhood N of x in Ω if i ∈ Ij+1, j ≥ 0.

An increasing sequence of vector spaces {Vj}nj=1 as in Remark 4 is a flag at x (see
[32] for this terminology) and is a minimal flag if the lengthm is a minimum. Remark
6 in section 2.1 shows that a minimal flag is unique. The equivalence mentioned in
Remark 4 is easy. Indeed, assume first that for each index set I with φ ⊂ I
{1, 2, ..., n}, there is j /∈ I such that aj does not vanish identically on (x+ VI) ∩N
for any neighbourhood N of x in Ω. Then a flag of length m = n is easily constructed
by induction. Conversely, suppose we are given a flag of vector spaces {Vj}mj=1 at
x ∈ Ω. Let φ ⊂ I {1, 2, ..., n}, and suppose in order to derive a contradiction,
that aj ≡ 0 on (x+ VI) ∩N for some neighbourhood N of x in Ω, for each j /∈ I.
In particular, aj ≡ 0 on (x+ V0) ∩ N , i.e. aj (x) = 0, for j /∈ I, and it follows
that V1 ⊂ VI since aj (x) 9= 0 if j ∈ I1. Thus aj ≡ 0 on (x+ V1) ∩ N for j /∈ I,
and it follows that V2 ⊂ VI . By induction we obtain Rn = Vm ⊂ VI , the required
contradiction since I is a proper subset of {1, 2, ..., n}.
We now show that if the vector fields Xj = aj (x) ∂

∂xj
are Lipschitz continuous,

then the flag condition is necessary for subellipticity.

Proposition 11 Suppose the vector fields Xj = aj (x) ∂
∂xj
, 1 ≤ j ≤ n, are Lipschitz

and that X = {Xj}nj=1 is subelliptic in Ω. Then the flag condition in Definition 10
holds in Ω.

Proof. If the flag condition fails at x = 0 for I = {m+ 1,m+ 2, ..., n} with some
1 ≤ m < n, then there exists a neighbourhood N of 0 such that aj ≡ 0 on

iVI = {x : xi = 0, 1 ≤ i ≤ m} ∩Ω ∩N , 1 ≤ j ≤ m.
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Define ϕ on [0,∞) by
ϕ (t) =

�
t, 0 ≤ t ≤ 1
1, t > 1

.

For ε > 0 sufficiently small, set uε (x) = ϕ

�
|x3|
ε

�
where x3 = (x1, ..., xm), and define

fεj = Xju
ε = aj

∂uε

∂xj
. Since aj is Lipschitz and vanishes on iVI for 1 ≤ j ≤ m, we have

|aj (x)| ≤ C |x3| for 1 ≤ j ≤ m, and so also��fεj (x)�� = ����aj (x)ϕ3� |x3|ε
�
1

ε

∂ |x3|
∂xj

���� ≤ C, 1 ≤ j ≤ n.

Thus uε is a W 1,2 (Ω) weak solution of

Luε =
n[
j=1

T 3jf
ε
j ,

where L =
Sn
j=1X

3
jXj satisfies (33), Tj = Xj is subunit with respect to the matrixa1 (x)

2 · · · 0
...

. . .
...

0 · · · an (x)2


corresponding to L, and nuεn2,

��fεj ��∞ are uniformly bounded for 0 < ε < 1. Never-
theless, the uε are not uniformly bounded in any Hölder space, and this shows that
X = {Xj}nj=1 is not subelliptic in Ω.
In the next section, we show that in the case the aj (x) are real-analytic, then the

vector fields {Xj}nj=1 satisfy the flag condition in Definition 10 if and only if they
satisfy Hörmander’s commutation condition in Definition 1. In order to state the
first of our two generalizations of Hörmander’s commutation theorem, we recall the
definition of the reverse Hölder condition, referred to as RH∞ in [8] and elsewhere.

Definition 12 A nonnegative function a (t) defined on an open subset J of R satis-
fies the reverse Hölder condition of infinite order if

ess sup
t∈I

a (t) ≤ C 1

|I|

]
I

a (t) dt

for all intervals I ⊂ J.
Theorem 13 Suppose for 1 ≤ j ≤ n that aj (x) is nonnegative and Lipschitz con-
tinuous on a domain Ω ⊂ Rn, and reverse Hölder in each variable xi with i 9= j,
uniformly in the remaining variables. Then the set X of vector fields Xj = aj

∂
∂xj
,

1 ≤ j ≤ n, is subelliptic in Ω if and only if X satisfies the flag condition in Defini-
tion 10 in Ω. In the case that the flag condition in Definition 10 holds in Ω, there
is Q ∈ [n,∞) depending only on the Lipschitz and reverse Hölder constants of the aj
such that X is Lq-subelliptic in Ω for all q > Q.

The constant Q can be taken to be a doubling exponent D of the flag balls
B (x, r) defined in subsubsection 2.1.1 below. A doubling exponent D is given by the
inequality

|B (x, r)|≤C
�r
t

�D
|B (y, t)| , whenever B (x, r) ⊃ B (y, t) (35)

0< r < δ dist (x, ∂Ω) , 0 < t < δ dist (y, ∂Ω) .

See Lemma 55 in section 4 for details.
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The noninterference condition In order to motivate our second generalization
of Hörmander’s theorem, we observe that an operator L = ∇3B (x)∇ satisfying the
quadratic form condition in Definition (33) with respect to continuous vector fields
Xj = aj (x)

∂
∂xj

that satisfy the flag condition in Definition 10 is elliptic if and only
if m can be taken to be 1 in Definition 10 for all x ∈ Ω. The simplest nonelliptic
case thus occurs when for every x ∈ Ω, a minimal flag has length m at most 2, and
when the length m is exactly 2, the index set I1 can be chosen to be a singleton, i.e.
#I1 = 1. Of course there must be at least one point x where m = 2, since otherwise
L is elliptic. For example, in the case that m = 2 and I1 = {1} at a point y, we
assume that in some neighbourhood of y we have

a1 (x)≥ c > 0, (36)

aj (·, x2, ..., xn)> 0 on a dense subset for all x2, ..., xn and 2 ≤ j ≤ n.

We will also assume that aj is nonnegative and reverse Hölder of infinite order in x1
for j ≥ 2 (but not in xi for i 9= 1). Moreover, we will suppose there is a positive
constant Cmax such that

max
1≤j≤n

sup
x∈Ω

aj (x) ≤ Cmax. (37)

In this case there is a substitute for the requirement that aj satisfies the reverse Hölder
condition in all of the variables xi with i 9= j, in order to obtain Lq-subellipticity for
L.
To state this condition, we first define open rectangular boxes of radius r and

center x by

A (x, r) =
n\
j=1

(xj −Aj (x, r) , xj +Aj (x, r)) , (38)

where half the jth side length of A (x, r) is given by

Aj (x, r) =

] r

0

aj (x1 + t, x2, ..., xn) dt, (39)

provided the segment joining x and x+(r, 0, ..., 0)) lies in Ω. Note that Aj (x, r) > 0
for j ≥ 2, r > 0 by (36), and thus we may rewrite (36) as the following nondegeneracy
condition,

A1 (x, r) ≥ cr and Aj (x, r) > 0 for x ∈ Ω, 0 < r < δ dist (x, ∂Ω) , (40)

where δ is chosen small enough that Aj (x, r) is defined for x ∈ Ω, 0 < r <
δ dist (x, ∂Ω). To simplify notation, we will always assume from now on that the
definitions of the Aj (x, r) are with respect to the variable x1, and that (40) holds.
The reader can easily supply the more general statements and proofs. Even when
the aj are reverse Hölder of infinite order in the x1 variable uniformly in x2, ..., xn,
the rectangular boxes A (x, r) do not in general form a homogeneous space structure
as in subsection 2.2, since the engulfing property can fail as evidenced by the three
dimensional example

a1 (x) = 1,

a2 (x) = 3x
2
1,

a3 (x) = 9x
8
1 + x

2
2.

See Example 37 in subsubsection 2.2.1 for details. This problem can be avoided if the
following noninterference condition is assumed, which has the consequence of forcing
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the rectangles A (x, r) to form a (local) homogeneous space structure in the sense of
Definition 26 below, when the aj are doubling weights in the x1 variable.

Definition 14 Suppose the continuous vector fields Xj = aj
∂
∂xj

satisfy (40) in Ω.

We say that the vector fields {Xj}nj=1 satisfy a noninterference condition in Ω if there
are positive constants Cc and δ such that

C−1c Aj (x, r) ≤ Aj (z, r) ≤ CcAj (x, r) , z ∈A (x, r) , x ∈ Ω, 0 < r < δdist (x, ∂Ω) ,

for 1 ≤ j ≤ n.

We remark that if δ is sufficiently small depending on Cmax in (37), then Aj (z, r)
is defined for z ∈A (x, r) when 0 < r < δ dist (x, ∂Ω). Since the above inequality is
automatic for j = 1, we may restrict j to the range 2 ≤ j ≤ n. In particular, as we
show in Lemma 82 of the appendix, the noninterference condition 14 is implied by
the following strong noninterference condition for Lipschitz continuous vector fields
in Ω relative to the boxes A (x, r):

r

+
sup

z∈A(x,r)

����∂aj∂xi
(z)

����
,
Ai (x, r) ≤ CAj (x, r) , x ∈ Ω, 0 < r < δ dist (x,∂Ω) ,

(41)
for 2 ≤ i, j ≤ n.

Remark 5 A comment regarding the supremum in (41) is in order. If aj (z) is Lip-
schitz continuous in z with constant C, then aj (z1, ..., zn) is Lipschitz continuous
in each variable zi separately. Thus for each fixed z1, ..., zi−1, zi+1, ..., zn the par-
tial derivative ∂aj

∂zi
(z1, ..., zn) exists for a.e. zi and has absolute value bounded by C

whenever it exists. We will always interpret the expression supz∈A(x,r)
���∂aj∂zi

(z)
��� to

mean the supremum of the Lipschitz constants of the functions zi → aj (z1, ..., zn) for
(z1, ..., zn) such that (z1, ..., zn) ∈ A (x, r).

Note that the strong noninterference condition (41) is automatic if i = j or for
any i, j with Ai (x, r) ≈ Aj (x, r), and thus vacuously true in dimension n = 2. Under
some natural hypotheses, the same is actually true of Definition 14, and this is proved
in Lemma 83 of the appendix.
A simple example satisfying Definition 14 is a1 ≡ 1 and aj (x) = |x|pj for 2 ≤ j ≤

n, where pj is a real number greater than or equal to one. In this case, Aj (x, r) ≈
r (r + |x|)pj .

Theorem 15 Suppose for 1 ≤ j ≤ n that aj (x) is nonnegative and Lipschitz contin-
uous on a domain Ω ⊂ Rn, and that the vector fields Xj = aj ∂

∂xj
satisfy (40) in Ω.

We also assume the noninterference condition in Definition 14. Suppose moreover
that each aj with 2 ≤ j ≤ n is reverse Hölder of infinite order in the variable x1,
uniformly in the remaining variables. Then there is Q ∈ [n,∞) depending only on
the Lipschitz and reverse Hölder constants of the aj such that the set X = {Xj}nj=1
of vector fields is Lq-subelliptic in Ω for all q > Q.

As before, the constant Q can be taken to be a doubling exponent D of the
rectangles A (x, r). Again, see (45) below and Lemma 55 in section 3. We will often
refer to the open rectangles A (x, r) defined in (38) as noninterference balls.
In particular, the following special case arises in connection with the Monge-

Ampère equation discussed in subsection 1.3 on applications below. If a1 (x) ≡ 1 and
ai (x) = aj (x) for 2 ≤ i, j ≤ n in Theorem 15, we have the following corollary.
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Corollary 16 Suppose that a (x) is nonnegative and Lipschitz continuous on a do-
main Ω ⊂ Rn, and reverse Hölder of infinite order in the variable x1 uniformly
in x2, ..., xn. Suppose that a (x1, x2, ..., xn) doesn’t vanish identically in x1 for any
x2, ..., xn. Then there is Q ∈ [n,∞) depending only on the Lipschitz and reverse
Hölder constants of the aj such that the quadratic form

Q (x, ξ) = ξ21 + a (x)
2 �
ξ22 + ...+ ξ2n

�
(42)

is Lq-subelliptic in Ω for all q > Q.

As noted above, the constant Q can be taken to be a doubling exponent D of
the rectangles A (x, r) as in (45). Corollary 16 is a corollary of Theorem 15 since by
Lemma 83 in subsection 6.6 of the appendix, the noninterference condition 14 holds
automatically if ai = aj for 2 ≤ i, j ≤ n. A stonger result is given in Corollary 21 in
the next subsubsection.
Franchi [8] and Franchi and Lanconelli [9] have also obtained versions of Theorem

13 and 15 and Corollary 16. In [9], the aj considered are products of special one-
dimensional functions that behave like monomials, and in [8] a strong form of the
reverse Hölder condition is assumed along integral curves γu of the vector fields
Tu =

Sn
j=1 ujaj (x)

∂
∂xj
, 0 < |uj | < 1, namely,

sup
z∈C hK(x,r) aj (z) ≤ C inf

�
1

r

] r

0

aj (γu (t)) dt : γu (t) = Tu (γu (t)) , |uj| ≥ ε > 0,γu (0) = x

�
,

(43)
where K (x, r) are the balls corresponding to the subunit metric, and hK (x, r) denotes
the smallest closed rectangular box with edges parallel to the coordinate axes that
contains K (x, r). In n = 3 dimensions, if we take 0 < β1 < ... < βN and set

a1 (x) = 1,

a2 (x) = 3x
2
1,

a3 (x) =
N\
j=1

�
x2 − βjx

3
1

�2
,

then the hypotheses of Theorem 13 hold, yet
U r
0
a3 (γu (t)) dt = 0 for

u2
u1
∈ {β1, ...,βN},

γu (0) = 0, and so the strong form of the reverse Hölder condition (43) fails. Nev-
ertheless, with some work, one can show that (43) does hold under the special hy-
potheses of Corollary 16.

1.2.2 Sharper technical theorems

Due to the local nature of the Lq-subelliptic conclusion in Theorems 13 and 15, we
may assume without loss of generality that a1 (x) ≡ 1, i.e. X1 = ∂

∂x1
. Indeed, fix

x0 ∈ Ω. We may suppose that a1 (x0) = max1≤j≤n aj (x0) > 0, and then definehΩ = �
x ∈ Ω : a1 (x) > 1

2a1 (x0)
�
and haj (x) = aj(x)

a1(x)
for x ∈ hΩ. It is clear that the

vector fields iXj = haj (x) ∂
∂xj
, 1 ≤ j ≤ n, satisfy in hΩ the same quadratic form,

Lipschitz continuity, reverse Hölder, flag and/or noninterference conditions as the
vector fields Xj = aj (x)

∂
∂xj
, 1 ≤ j ≤ n, do in Ω, and with comparable constants

depending on x0. In this way, we have distinguished a direction, namely the x1
direction, in which curves of unit Euclidean speed are subunit.
Having established this, it is now possible to relax the Lipschitz continuity of the

remaining coefficients aj , 2 ≤ j ≤ n, in this distinguished direction, still assuming
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Lipschitz continuity in the transverse directions (transverse continuity is essential as
evidenced by the pathological Example 37 in the next section). Moreover, it is also
possible to relax the reverse Hölder continuity of the coefficients aj in the x1 variable.
For this, we need the weaker reverse Hölder condition of order p ∈ (1,∞):

Definition 17 Let 1 < p < ∞. A nonnegative function a (t) defined on an open
subset J of R, satisfies the reverse Hölder condition of order p, denoted a ∈ RHp, if�

1

|I|

]
I

a (t)p dt

� 1
p

≤ C 1

|I|

]
I

a (t) dt, (44)

for all intervals I ⊂ J.

This results in the following sharper, but more technical, sufficient conditions for
subellipticity.

Theorem 18 Suppose that a1 (x) ≡ 1 and aj (x) is continuous and nonnegative
on a domain Ω ⊂ Rn, 2 ≤ j ≤ n. Moreover, suppose aj is Lipschitz continuous
in x2, ..., xn uniformly in x1, reverse Hölder of infinite order in each variable xi
with i 9= 1, j, uniformly in the remaining variables, and reverse Holder of order
p > max {D, 4} in the variable x1, uniformly in the remaining variables, where D
is a doubling exponent for the flag balls as in (35). If the set X of vector fields
Xj = aj

∂
∂xj
, 1 ≤ j ≤ n, satisfies the flag condition in Definition 10 in Ω, then X is

Lq-subelliptic in Ω for all q > D.

In order to state the sharpened form of Theorem 15, we need a doubling exponent
D for the noninterference balls A (x, r):

|A (x, r)|≤C
�r
t

�D
|A (y, t)| , whenever A (x, r) ⊃ A (y, t) , (45)

0< r < δ dist (x, ∂Ω) , 0 < t < δ dist (y, ∂Ω) .

See Lemma 55.

Theorem 19 Suppose that a1 (x) ≡ 1 and aj (x) is continuous and nonnegative on a
domain Ω ⊂ Rn, 2 ≤ j ≤ n. Let D be a doubling exponent in (45). Suppose that both
the nondegeneracy condition (40) and the noninterference condition in Definition 14
hold, and that each aj satisfies the RHp condition (44) for some p > max {D, 4}
in the variable x1, uniformly in x2, . . . , xn, and that each aj is Lipschitz continuous
in x2, . . . , xn, uniformly in x1. Then the set X = {Xj}nj=1 of vector fields is Lq-
subelliptic in Ω for all q > D.

There are two differences between Theorems 13 and 18, and between Theorems
15 and 19. The aj are no longer assumed Lipschitz continuous in the distinguished
variable x1, and are no longer assumed reverse Hölder of infinite order in x1.

Example 20 See subsection 6.4 of the appendix for examples of functions aj that
satisfy (44) for p > max {D, 4}, yet fail to be reverse Hölder of infinite order. By
Proposition 77, such examples give rise to a homogeneous space of noninterference
balls A (x, r) that are not equivalent to the subunit balls K (x, r) of Fefferman and
Phong [7] and Nagel, Stein and Wainger [33]. Nevertheless, by Theorem 19, the

corresponding set of vector fields
q
aj

∂
∂xj

rn
j=1

is still Lq-subelliptic for large q.
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We close with a strengthening of Corollary 16.

Corollary 21 Suppose that a (x) is continuous and nonnegative on a domain Ω ⊂
Rn, Lipschitz continuous in the variables x2, ...xn uniformly in x1, and reverse Hölder
of order p > max {D, 4} in the variable x1 uniformly in x2, ..., xn, where D = 1 +
(n− 1) d and d is the doubling order in]

J

a (x) dx1 ≤ C
�
|J |
|I|

�d ]
I

a (x) dx1, whenever I ⊂ J, uniformly in x2, . . . , xn,
(46)

so that D is as in (45). Suppose that a (·, x2, ..., xn) doesn’t vanish identically in any
nontrivial interval for any x2, ..., xn. Then the quadratic form

Q (x, ξ) = ξ21 + a (x)
2 �ξ22 + ...+ ξ2n

�
is Lq-subelliptic in Ω for all q > D.

This is a corollary of Theorem 19 since the noninterference condition in Definition
14 is automatic by Lemma 83 if the aj coincide for 2 ≤ j ≤ n.
1.2.3 Connections between the theorems

Here we discuss the connection of Theorems 9, 13 and 15 with Theorems 6 and
7. Following the approach pioneered in [33], our strategy for proving Theorems 13
and 15 is to use the vector fields Xj = aj (x)

∂
∂xj
, 1 ≤ j ≤ n, to construct balls

B (x, r) and A (x, r) that satisfy a δ-local prehomogeneous and homogeneous space
structure respectively in Ω, relative to Lebesgue measure. See subsection 2.2 for a
detailed discussion of prehomogeneous and homogeneous spaces. A key feature of
these spaces is the doubling condition

|B (x, 2r)|≤C |B (x, r)| , 0 < r <∞,
|A (x, 2r)|≤C |A (x, r)| , 0 < r <∞,

first established for smooth vector fields satisfying Hörmander’s commutation condi-
tion in [33]. We also establish a subrepresentation inequality for Lipschitz functions

f in terms of their a-gradients ∇af =
�
aj

∂f
∂xj

�n
j=1

of the form:

�����f (x)− 1

|B (y, r)|

]
B(y,r)

f

����� ≤ C
]
B(y,r)

|∇af (z)|
d (x, z)

|B (x, d (x, z))|dz, (47)

for x ∈ B (y, r), where d (x, y) is the quasimetric associated with the balls B (x, r),
along with a similar result for the balls A (x, r). The main tool used for this is the
notion of adaptability of balls to vector fields as used in the statement of Theorem 9.
From these facts and others follow Poincaré and Sobolev inequalities, such as those
in (15) and (17), as well as the local equivalence of these families of balls with the
subunit balls K (x, r) of Fefferman and Phong. At this point, we are able to apply
Theorem 7 to obtain subellipticity of the vector fields {Xj}nj=1 in Theorems 13 and
15, and to apply Theorem 6 to obtain subellipticity in Theorem 9. These methods
yield not only Hölder continuity for weak solutions u to the equation

Lu+HRu+ S3Gu+ Fu = f +T3g,

25



but also Harnack inequalities for nonnegative weak solutions u to this equation in a
ball B (y, r): there exist positive constants c < 1 < C such that

ess sup
x∈B(y,cr)

u (x) ≤ C ess inf
x∈B(y,cr)

u (x) + r2δ nfn q
2
+ rδ ngnq ,

where q (1− δ) > D and D is the doubling exponent for the balls in question. See
Theorem 47 in section 3 below.
As mentioned above, the balls B (x, r) and A (x, r) both turn out to be locally

equivalent to the subunit balls K (x, r) when the continuous vector field coefficients
aj (x) are reverse Hölder of infinite order in the x1-variable, despite the different
constructions used in each case. In fact, assuming only that the continuous aj (x)
are Lipschitz in x2, ..., xn and doubling in x1, uniformly in the remaining variables,
the noninterference balls A (x, r) are locally equivalent to the subunit balls K (x, r)
if and only if the aj (x) are reverse Hölder of infinite order in the x1-variable. Thus
in the event the vector field coefficients aj (x) are RHp, but not RH∞, in the x1-
variable for p sufficiently large, namely p larger than the doubling exponent D of
the balls A (x, r), the collection of vector fields X = {Xj}nj=1 is subelliptic despite
the nonequivalence of the balls A (x, r) and K (x, r). Moreover, the Fefferman-Phong
condition (19) is necessary for the subellipticity of the Lipschitz continuous vector
fields {Xj}nj=1 in the sense of Definition 8 (and necessary for stable subellipticity if
the Xj are merely continuous).
See section 2 and the appendix for proofs of these assertions regarding subunit

balls. In section 3, we prove our general result Theorem 6. In section 4 we complete
the proof of Theorem 7, extending the theorem of Fefferman and Phong, by estab-
lishing the ”accumulating sequence of Lipschitz cutoff functions on annuli” condition
(20) with p = ∞. We next establish a proportional subrepresentation inequality
similar to (47), and use this to prove Theorem 9 on vector fields adapted to a homo-
geneous space structure. Then we use Theorem 9 to reduce the proofs of Theorems
13 and 15, our extensions of Hörmander’s theorem in the case of diagonal vector
fields, to establishing appropriate homogeneous space structures adapted to X . In
section 5, we establish these homogeneous space structures adapted to X for both
the flag balls and noninterference balls. Before proceeding with this plan, we indicate
some applications to hypoellipticity of smooth nonlinear equations.

1.3 Applications to quasilinear equations
In order to apply our rough subelliptic theorems to hypoellipticity of the quasilinear
equations (6), and more generally to diagonal systems of this form, we recall the
regularity theorems for quasilinear equations in [16] and [34]. As in [16], a symmetric
nonnegative Lipschitz matrix A (y) is subordinate in a domain Ω ⊂ RN if

n[
j=1

#
n[
i=1

∂

∂yc
aij (y) ξi

$2
≤ Cξ3A (y) ξ, y ∈ Ω, ξ ∈ Rn, 1 ≤ c ≤ N. (48)

Theorem 22 (Guan [16]) Suppose that u ∈ Lip1 (Ω) is a weak solution of the di-
vergence form equation

n[
i,j=1

∂

∂xi

�
aij (x, u (x))

∂u

∂xj

�
= f (x) , x ∈ Ω,
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where aij ∈ C∞ (Ω×R), A = [aij ]nij=1 is symmetric, nonnegative semidefinite, and
subordinate in relatively compact subdomains of Ω×R, and f ∈ C∞ (Ω). Let

hL = ∇3 hA (x)∇ = n[
i,j=1

∂

∂xi
iaij (x) ∂

∂xj

be the linear operator with iaij (x) = aij (x, u (x)). Suppose that
trace [iaij ]nij=1 ≥ c > 0

in Ω, and that hL is α-subelliptic in Ω for some α > 0. Then u is smooth in Ω.
Clearly Theorems 13, 15 and 22 can be combined to yield smoothness of Lipschitz

solutions to quasilinear equations of the above type when the linearized operator hL
can be shown to satisfy the hypotheses of either Theorem 13 or 15.
We now mention the application of Corollary 16 to the Monge-Ampère equation

in [34]. We first recall the theorem for quasilinear systems in [34]. Note that the un-
knowns in the system below are vector functions p acted on by nonlinear second order
operators, and vector functions v that are connected to the unknowns p via a simple
elliptic equation. This flexibility permits application to equations of Monge-Ampère
type transformed by a partial Legendre transform. We recall another definition of
Guan [15]. We say that L = ∇3A (x)∇ is α-elliptic extendible in Ω for α > 0 if
for every x0 and Ω1 with x0 ∈ Ω1 Ω, there is a symmetric smooth nonnegative
subordinate matrix B (x) in Ω that vanishes in a neighbourhood N Ω1 of x0, is
elliptic in Ω− Ω1, and such that

Lε = ∇3 (A (x) +B (x) + εI)∇

is α-subelliptic in Ω, uniformly in 0 < ε < 1.
The scalar version of the next result with the simpler right-hand side f (x) is due

to Guan [15], and included in Theorem 22 above.

Theorem 23 Suppose that p = (pc)1≤c≤N ,v = (vc)1≤c≤N0
∈ Lip1 (Ω) and that

(p,v) is a weak solution of the system
n[

i,j=1

∂

∂xi
aij (x,v,p)

∂

∂xj

 pc = hc (x,v,p,Dp) , 1 ≤ c ≤ N,

Dv=Ψ (x,v,p) ,

where aij ∈ C∞ (Γ), Γ is a subdomain of Ω×RN0×RN , A (x,v,p) = [aij (x,v,p)]nij=1
is symmetric, nonnegative semidefinite, and subordinate in relatively compact subdo-
mains of Γ, h = (hc)1≤c≤N ∈ C∞

�
Γ×RnN

�
andΨ ∈ C∞ (Γ). Let hL = ∇3 hA (x)∇ =Sn

i,j=1
∂
∂xi
iaij (x) ∂

∂xj
be the scalar linear operator with iaij (x) = aij (x,v (x) ,p (x)).

Suppose that hL is α-elliptic extendible in Ω for some α > 0, that
trace [iaij ]nij=1 ≥ c > 0 in Ω,

and that h has the product decomposition

hc (x,v,p,Dp) = Hc,0 (x,v,p) +
M[
µ=1

Hc,µ (x,v,p)Φc,µ (x,v,p,Dp) , 1 ≤ c ≤ N,
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with Hc,µ and Φc,µ smooth functions of their arguments, and where the vector fields

Hc,µ (x,v (x) ,p (x))
∂

∂xk

are subunit with respect to hA for 1 ≤ µ ≤ M, 1 ≤ c ≤ N, 1 ≤ k ≤ n. Then p and v
are both smooth in Ω.

Corollary 16 and Theorem 23 apply to the quasilinear system ∂2

∂x21
+

n[
i,j=2

∂

∂xi
k (x,v,p)Mij (p)

∂

∂xj

 pc = hc (x,v,p,Dp) , 1 ≤ c ≤ N,

Dv= p,

that arises from the generalized Monge-Ampère equation,

detD2u = k (x, u,Du) , x ∈ Ω, (49)

where k is smooth and nonnegative in Ω×R×Rn, and Ω is a convex domain in Rn.
Indeed, using the higher dimensional partial Legendre transform corresponding to a
convex C2,1 solution u of (49), 

s = x1
t2 =

∂u
∂x2

(x)
...
tn =

∂u
∂xn

(x)

, (50)

the vector-valued functions v = (vc)
n
c=2 = (xc (s, t))

n
c=2 and p = Dv =

�
∂vi
∂tj

�
2≤i≤n,1≤j≤n

(s = t1) arising from the inverse transform, satisfy a divergence form quasilinear sys-
tem

Lp ≡
�

∂2

∂s2
+∇3tkM (p)∇t

�
p = f ((s, t) ,v,p,Dp) , (51)

in the classical weak sense as given in Definition 39 below . Assuming that u ∈ C2,1
and k (x, u,Du) ≈ x2m1 +ψ (x) where ψ (x)

1
2m is Lipschitz for some m ∈ N , and that

det [∂i∂ju]
n
i,j=2 > 0 so that M (p) is a positive definite matrix, Corollary 16 applies

to show that the linearization of (51) is α-subelliptic for some α > 0, and then
Theorem 23 yields smoothness. We note here that the main feature of Corollary 16
that permits its use with the partial Legendre transform (50) is that no assumption
other than Lipschitz is required of a (x) in the variables x2, ..., xn which get replaced
with the unknown Lipschitz functions (v2, ..., vn). Indeed, it is this property that
allows us to verify the hypothesis in Theorem 23 that the linear operators hL are
α-elliptic extendible in Ω for appropriate k. See [34] for details.
An easily stated special case is this: If the smooth nonnegative prescribed Gaussian

curvature kn (x) of the graph of a C2,1 function u (x) vanishes at a nondegenerate
critical point at x0, then u (x) is smooth near x0 if (and only if) kn−1 (x0) > 0. Here
kj denotes the jth symmetric curvature of u. Again, see [34] for details.
We also point out that certain subelliptic quasilinear systems of equations have

been considered by Xu and Zuily in [46]. They use the Campanato method to treat
equations of the form

m[
i,j=1

X 3iMij (x,p)Xj

 pc = fc (x,p,Dp) , 1 ≤ c ≤ N, (52)
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where p = (p1, ..., pN ) is assumed continuous and Dp locally square integrable,
M = [Mij (x,p)]

m
i,j=1 is smooth and elliptic, f = (f1, ..., fN ) is smooth and has

at most quadratic growth in Dp, and {Xj}mj=1 is a collection of smooth linear vector
fields satisfying Hörmander’s condition 1 (see also [29], [1], [2] and [13]). Thus the
degeneracies are incorporated only in the linear part of the operator, i.e. the vector
fields Xj , while the nonlinearities occur only in the elliptic part of the operator, i.e.
the matrix M (x,p). In the above application to the Monge-Ampère equation, the
vector fields degenerate nonlinearly, and these methods do not apply.

2 Comparisons of conditions

In this section, we will compare our flag condition in Definition 10 to Hörmander’s
commutation condition in Definition 1, showing that they coincide for real-analytic
diagonal vector fields, and compare our homogeneous space structures used in the
proofs of Theorems 13 and 15 to the metric space of subunit balls. Proposition 36
provides a vital link in one of our proofs of Theorem 13. The remaining results of
this section provide useful perspective, but not all of them will be used in the sequel.

2.1 Flags and commutators
We begin by demonstrating here the equivalence of Hörmander’s commutation condi-
tion in Definition 1 and the flag condition in Definition 10 when the diagonal vector
fields Xj = aj (x) ∂

∂xj
, 1 ≤ j ≤ n, are real-analytic.

Proposition 24 If aj (x) is real-analytic in Ω for 1 ≤ j ≤ n, then the vector fields
Xj = aj (x)

∂
∂xj
, 1 ≤ j ≤ n, satisfy Definition 1 if and only if they satisfy Definition

10 in Ω.

Proof. Suppose first that {Xj}nj=1 satisfies Definition 10 in Ω. Fix x ∈ Ω and let
W denote the linear span of {Xj}nj=1 and their commutators of all orders at the
point x. We must show that W = Rn. Since i ∈ I1 implies that Xi (x) 9= 0, we
have that V1 ⊂ W. Now fix i ∈ I2 I1. Then ai is a real-analytic function that
is not identically zero on x + V1, and thus we must have ∂|α|

∂x
α1
1 ...∂xαnn

ai (x) 9= 0 for

some multi-index α of minimal length with αj = 0 for j /∈ I1. But as we will show,
this implies that the direction ei is in the span Wi of {Xi} ∪ {Xj}j∈I1 and their
commutators up to order |α| at the point x (note that we identify ei with ∂

∂xi
). We

proceed by induction on the length |α| of α, remembering that |α| is minimal. If
|α| = 0, then ai (x) 9= 0 and so ∂

∂xi
∈ Wi. If |α| = 1, say α = ej with j ∈ I1, then

ai (x) = 0, aj (x) 9= 0 and we compute that

[Xj ,Xi] = XjXi −XiXj = aj
∂ai
∂xj

∂

∂xi
− ai

∂aj
∂xi

∂

∂xj
(53)

equals aj (x) ∂ai∂xj
(x) ∂

∂xi
at x. Since ∂ai

∂xj
(x) 9= 0 by assumption, we have that ∂

∂xi
∈

Wi since aj (x) 9= 0 as noted above. Now if |α| = 2, say α = ej + ek with j, k ∈ I1,
then ai (x) = ∂ai

∂xj
(x) = ∂ai

∂xk
(x) = 0, aj (x) 9= 0, ak (x) 9= 0 and we compute that

[Xk, [Xj ,Xi]] =Xk [Xj ,Xi]− [Xj ,Xi]Xk

= ak

�
∂

∂xk

�
aj

∂ai
∂xj

��
∂

∂xi
− ak

�
∂

∂xk

�
ai
∂aj
∂xi

��
∂

∂xj

−
�
aj

∂ai
∂xj

∂ak
∂xi
− ai

∂aj
∂xi

∂ak
∂xj

�
∂

∂xk
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=

�
ak

∂aj
∂xk

∂ai
∂xj

+ akaj
∂2ai

∂xk∂xj

�
∂

∂xi
(modV1)

equals ak (x) aj (x) ∂2ai
∂xk∂xj

(x) ∂
∂xi

(modV1) at x. Since ∂2ai
∂xk∂xj

(x) 9= 0 by assump-

tion, we have that ∂
∂xi
∈ Wi since aj (x) , ak (x) 9= 0 as noted above. Continuing

inductively in this way, we obtain that ∂
∂xi
∈Wi ⊂W. Thus we have shown that for

i ∈ I2, the directions ei are in W, or equivalently that V2 ⊂W.
Now we proceed to show that the direction ei lies in W for i ∈ I3 I2. Again,

i ∈ I3 I2 implies that ai is a real-analytic function that is not identically zero
on x + V2, and thus we must have ∂|α|

∂x
α1
1 ...∂xαnn

ai (x) 9= 0 for some multi-index α of

minimal length with αj = 0 for j /∈ I2. As above, it follows by induction on the
length |α| of α that the direction ei is in the span of {Xi} ∪ {Xj}j∈I2 and their
commutators up to order |α| at the point x. Thus for i ∈ I3, the directions ei are in
W, or V3 ⊂ W. Iterating this argument we eventually obtain that Rn = Vm ⊂ W,
and so the condition in Definition 1 holds as required.
Conversely, suppose that {Xj}nj=1 satisfies Definition 1. With x fixed define

I1 = {i : ai (x) 9= 0} ,
V1 = span {ei : i ∈ I1} .

Then I1 9= φ, since otherwise aj (x) = 0 for all 1 ≤ j ≤ n, and it follows from (53)
that all commutators of {Xj}nj=1 of finite order vanish at x as well, contradicting
Definition 1. Now define

I2 = {i : ai is not identically 0 on (x+ V1) ∩N for any neighbourhood N of x} ,
V2 = span {ei : i ∈ I2} .

We claim that I2 I1 9= φ unless I1 = {1, 2, ..., n}. If not, then I1 {1, 2, ..., n}
and I2 I1 = φ. Thus there is a neighbourhood N of x such that all ai with i /∈ I1
vanish identically on (x+ V1) ∩N . This motivates the following definitions. Let X
denote the Lie algebra generated by the vector fields {Xj}nj=1, and define the linear
subspace

Y1 =

T =
n[
j=1

bj
∂

∂xj
∈ X : bj ≡ 0 on (x+ V1) ∩N for j /∈ I1

 .
Note that Xi = ai ∂

∂xi
∈ Y1 for all 1 ≤ i ≤ n. Thus it is enough to show that Y1 is a

Lie algebra, since it then follows that X = Y1, contradicting Definition 1 (note that
Y1 does not span Rn at x since I1 is a proper subset). So let S =

Sn
j=1 cj

∂
∂xj
, T =Sn

j=1 bj
∂
∂xj
∈ Y1 and compute that

[S, T ] = ST − TS =
n[
c=1

dc
∂

∂xc

where

dc =
n[
j=1

�
cj
∂bc
∂xj
− bj

∂cc
∂xj

�
.

To show that [S, T ] ∈ Y1, it suffices to show that when c /∈ I1 each product, cj ∂bc∂xj

and bj ∂cc∂xj
, vanishes identically on (x+ V1) ∩ N . If j ∈ I1, then both ∂bc

∂xj
and ∂cc

∂xj
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vanish identically on (x+ V1)∩N since c /∈ I1 and S, T ∈ Y1. On the other hand, if
j /∈ I1, then both cj and bj vanish identically on (x+ V1) ∩N . This completes the
proof that I2 I1 9= φ unless I1 = Rn.
We now continue by defining inductively,

Ij+1 = {i : ai is not identically 0 on (x+ Vj) ∩N for any neighbourhood N of x} ,
Vj+1 = span {ei : i ∈ Ij+1} .

At each stage of the induction, it follows that Ij+1 Ij 9= φ unless Ij = {1, 2, ..., n}
using 1 and the fact that for any neighbourhood N of x,

Yj =
+
T =

n[
c=1

bc
∂

∂xc
∈ X : bc ≡ 0 on (x+ Vj) ∩N for c /∈ Ij

,

is a Lie algebra. Eventually, we reach Vm = Rn for some m ∈ N, and this shows that
the equivalent formulation of Definition 10 given in Remark 4 holds.

Remark 6 One can easily check that the above proof establishes the stronger as-
sertions: If the vector fields Xj = aj (x)

∂
∂xj
, 1 ≤ j ≤ n, are smooth and satisfy

Definition 10, and if aj (x) satisfies the reverse Hölder condition in each variable xi
with j ∈ Ic+1 Ic and i ∈ Ic, uniformly in the remaining variables, then the vector
fields {Xj}nj=1 satisfy Definition 1. This uses the fact that a smooth function f that
is reverse Hölder in each variable separately, and not identically zero, is of finite
type, i.e. for every x there is a multi-index α such that ∂|α|

∂x
α1
1 ...∂xαnn

f (x) 9= 0. See

e.g. Guan and the first author [17]. Conversely, the proof as given shows that if the
aj (x) are merely smooth and the vector fields Xj = aj (x)

∂
∂xj
, 1 ≤ j ≤ n, satisfy

Definition 1, then they satisfy Definition 10. Note also that part of the construction
in the second half of the proof above provides a means of creating a flag of minimal
length for vector fields {Xj}nj=1 satisfying 10, even when the coefficients aj are not
real-analytic, but merely continuous. The argument also yields the uniqueness of the
minimal flag.

2.2 Homogeneous and prehomogeneous spaces
We now introduce the notions from the theory of homogeneous spaces that we will
need. Let d be a quasimetric on an open subset Ω of Rn, by which we mean a finite
nonnegative function d on Ω×Ω for which there is a positive constant κ so that

d (x, y) = 0⇐⇒ x = y (54)

d (x, y)≤ κ (d (x, z) + d (y, z))

for all x, y, z in Ω. A quasimetric is not in general symmetric, but see Remark 8
below. We define the ball centered at x with radius r by

B (x, r) = {y ∈ Ω : d (x, y) < r} , 0 < r <∞. (55)

If d (x, y) is upper semicontinuous in the second variable y, for each x, then the balls
B (x, r) are open for x ∈ Ω and r > 0. In general the balls satisfy the engulfing
property: there is a constant γ > 1 such that

B (x, r) ∩B (y, r) 9= φ =⇒ B (y, r) ⊂ B (x, γr) . (56)
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Indeed, following the development in Chapter 1 of Stein [42], if w ∈ B (y, r) and
z ∈ B (x, r) ∩B (y, r), then

d (x,w)≤ κ [d (x, y) + d (w, y)]

≤ κ [κ (d (x, z) + d (y, z)) + κ (d (w,w) + d (y,w))]

< κ [κ (r + r) + κ (0 + r)] = 3κ2r,

which yields (56) with γ = 3κ2. We have as well the monotonicity and scale properties

∪0<r<sB (x, r) = B (x, s) , for s > 0, x ∈ Ω, (57)

∩r>0B (x, r) = {x} and ∪r>0 B (x, r) = Ω, x ∈ Ω. (58)

Conversely, given a collection of open subsets {B (x, r)}x∈Ω,0<r<∞ of Ω satisfying
(56), (57) and (58), the function

d (x, y) = inf {r > 0 : y ∈ B (x, r)} (59)

is a quasimetric on Ω that is upper semicontinuous in the second variable, and satisfies
both (54) and (55). This is essentially stated in [42] and [33], but for the sake of
completeness, we give here a statement and proof, as well as an extension to balls
that fail to satisfy the monotonicity condition (57).

Lemma 25 Suppose Ω is an open subset of Rn, and {B (x, r)}x∈Ω,0<r<∞ is a family
of open subsets of Ω satisfying (56), (57) and (58). Then the function d defined in
(59) is upper semicontinuous in the second variable and satisfies (54) and (55). If
however, the monotonicity condition (57) is relaxed to the weak monotonicity condi-
tion,

B (x, r) ⊂ B (x, s) , for 0 < r ≤ cs, x ∈ Ω, (60)

for some 0 < c < 1, then d in (59) still satisfies (54) and is upper semicontinuous in
the second variable, but (55) must be replaced with the equivalence condition

B (x, r) ⊂ {y ∈ Ω : d (x, y) < t} ⊂ B
�
x,
t

c

�
, 0 < r < t <∞. (61)

Proof. First, d is defined and finite on Ω×Ω since ∪r>0B (x, r) = Ω for all x ∈ Ω
by (58). The upper semicontinuity of d in the second variable follows from the
assumption that the balls B (x, r) are open.
If d (x, y) = 0, then y ∈ ∩r>0B (x, r) = {x} by (57) and (58), even by (60)

and (58), and so x = y. Conversely, if x = y, then d (x, y) = 0 by (59) and the
first part of (58) and this proves the first assertion in (54). Now fix x, y, z and
choose r > max {d (x, z) , d (y, z)}. Then B (x, r) ∩ B (y, r) ⊃ {z} 9= φ implies that
y ∈ B (y, r) ⊂ B (x, γr) by (56). Thus d (x, y) ≤ γr and taking the infimum over
r > max {d (x, z) , d (y, z)} yields

d (x, y) ≤ γmax {d (x, z) , d (y, z)} ≤ γ (d (x, z) + d (y, z)) ,

which is the second assertion in (54) with κ = γ.
The forward inclusion ⊂ in (55) holds since y ∈ B (x, r) implies y ∈ B (x, t)

for some t < r by the backward inclusion of (57), which yields d (x, y) < r. The
backward inclusion ⊃ in (55) follows since if d (x, y) < r, then y ∈ B (x, r) by the
forward inclusion in (57). With the weak monotonicity condition (60) in place of
(57),we obtain only the containments in (61). This completes the proof of Lemma
25.
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Definition 26 A pair (Ω, d) where Ω is an open subset of Rn and d is a quasimetric
that is upper semicontinuous in the second variable, is a homogeneous space if the
balls B (x, r) defined in (55) satisfy a doubling condition: there is a positive constant
Cdoub such that

|B (x, γr)| ≤ Cdoub |B (x, r)| (62)

for all x ∈ Ω and r > 0, where γ > 1 is the engulfing constant in (56).

We shall also need the notion of homogeneous space without the balls being open.

Definition 27 A pair (Ω, d) where Ω is an open subset of Rn and d (x, y) is a qua-
simetric that is Lebesgue measurable in the second variable y for each x, and whose
balls as defined in (55) satisfy (62), is a general homogeneous space.

Note that the doubling condition implies that the balls B (x, r) in either definition
above are nonempty, and in fact have positive measure, since for any fixed r > 0,

0 < |Ω| = sup
m≥1

|B (x, γmr)| ≤ sup
m≥1

Cmdoub |B (x, r)|

by (58) and (57), even by (58) and (60), and therefore |B (x, r)| > 0. Thus ho-
mogeneous spaces (Ω, d) on an open set Ω are characterized by a pair (Ω,B) where
B = {B (x, r)}x∈Ω,0<r<∞ is a family of nonempty open subsets of Ω satisfying (56),
(57), (58) and (62).
In proving Theorems 13 and 15 in section 4, we will need the following notion of

prehomogeneous space, weaker than that of homogeneous space, which requires only
weak monotonicity of the open sets B (x, r).

Definition 28 A pair (Ω,B) where Ω is an open subset of Rn and

B = {B (x, r)}x∈Ω,0<r<∞
is a family of nonempty open subsets of Ω, is a prehomogeneous space if (56), (58),
(62) and (60) hold.

We often refer to the open sets B (x, r) in a prehomogeneous space as preballs.

Remark 7 Lemma 25 shows that a prehomogeneous space (Ω,B) with

B = {B (x, r)}x∈Ω,0<r<∞
is equivalent to the homogeneous space with quasimetric d given in (59). The quasi-
metric balls {B∗ (x, r)}x∈Ω,0<r<∞ where B∗ (x, r) = {y ∈ Ω : d (x, y) < r} satisfy

B (x, r) ⊂ B∗ (x, t) ⊂ B
�
x,
t

c

�
, 0 < r < t <∞.

We will refer to this quasimetric d as the quasimetric associated to the prehomoge-
neous space.

Remark 8 Setting z = x in (54) yields d (x, y) ≤ κd (y, x), from which we obtain
that d is equivalent to the symmetric function

dsym (x, y) =
1

2
[d (x, y) + d (y, x)] . (63)

The function dsym satisfies (54) with a larger constant, but in general fails to be
upper semicontinuous, even measurable, in the second variable (e.g. take d (x, y) =
θ (x) |x− y| where 1 ≤ θ (x) ≤ 2 and θ is not Lebesgue measurable).
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We now show that a homogenous space is always equivalent to a symmetric general
homogeneous space.

Lemma 29 Given a quasimetric d (x, y) that is upper semicontinuous in the second
variable, there is a symmetric quasimetric d∗sym (x, y) that is equivalent to d (x, y)
and is Borel measurable in each variable separately.

Proof. Define
d∗ (x, y) = lim inf

z→x d (z, y) .

Then d∗ is lower semicontinuous in the first variable x for each y. Moreover, d∗ (x, y) =
limδ→0 fxδ (y) is a monotone increasing limit of functions f

x
δ (y) = inf |x−z|<δ d (z, y)

that are upper semicontinuous in the second variable y for each x. Thus d∗ is Borel
measurable in each variable separately, and so then is the symmetric function

d∗sym (x, y) =
1

2
[d∗ (x, y) + d∗ (y, x)] .

It only remains to prove the equivalence of d and d∗sym, which in turn is implied by
the equivalence of d and d∗. Clearly d∗ (x, y) = 0 if d (x, y) = 0. Fix x and y with
d (x, y) 9= 0. By the upper semicontinuity of d in the second variable, there is δ0 > 0
such that

D (x, δ0) ⊂
�
z : d (x, z) < α ≡ d (x, y)

2κ

�
.

Then for δ < δ0 and |x− z| < δ, we have d (x, z) < α and so

d (x, y)≤ κ [d (x, z) + d (y, z)]

≤ κ [α+ κd (z, y)]

=
1

2
d (x, y) + κ2d (z, y)

implies d (x, y) ≤ 2κ2d (z, y). Conversely, for |x− z| < δ,

d (z, y)≤ κ [d (z, x) + d (y, x)]

≤ κ [κd (x, z) + κd (x, y)]

≤ κ

2
d (x, y) + κ2d (x, y)

implies d (z, y) ≤
�
κ
2 + κ2

�
d (x, y). Altogether, we have shown that

1

2κ2
d (x, y) ≤ d (z, y) ≤

�κ
2
+ κ2

�
d (x, y) , for |x− z| < δ < δ0,

which yields

1

2κ2
d (x, y) ≤ fxδ (y) ≤

�κ
2
+ κ2

�
d (x, y) , for δ < δ0.

Now let δ → 0 to obtain

1

2κ2
d (x, y) ≤ d∗ (x, y) ≤

�κ
2
+ κ2

�
d (x, y) ,

which completes the proof.

We close this section by introducing the restriction of a prehomogeneous space
B = (Ω,B) with B = {B (x, r)}x∈Ω,0<r<∞ to one of its preballs B (x0, r0), by simply
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intersecting the balls B (x, r) with B (x0, r0) itself, for x ∈ B (x0, r0), to obtain the
family

B0 = {B0 (x, r)}x∈B(x0,r0),0<r<∞ , where B0 (x, r) = B (x, r) ∩B (x0, r0) . (64)

Lemma 30 Let B = (Ω,B) with B = {B (x, r)}x∈Ω,0<r<∞ be a prehomogeneous
space on Ω, and let x0 ∈ Ω and 0 < r0 < ∞. Then the pair B0 = (B (x0, r0) ,B0),
where B0 is given by (64), is a prehomogeneous space on B (x0, r0) provided that there
is C1 > 0 such that

|B (x, r)| ≤ C1 |B (x, r) ∩B (x0, r0)| , for 0 < r ≤ 1
2
r0, x ∈ B (x0, r0) . (65)

We refer to B0 as the restriction of B to its preball B (x0, r0).

Proof. The properties (56), (58) and (60) are immediate for B0 = (B (x0, r0) ,B0).
To show the doubling property (62) for B0, let c be as in (60) and choose m > 1 so
large that γ1−m < 1

2c
2. Then (56) and (60) for B, together with (65), yield (62) for

B0 as follows. Let x ∈ B (x0, r0) and 0 < r0 <∞. By (64) and m+1 applications of
doubling (62) for the preballs balls B (x, t) of B, we have

|B0 (x, γr)| ≤ |B (x, γr)| ≤ Cm+1doub

��B �x, γ−mr��� ,
and using γ−mr < c

�
1
2γ
−1cr

�
in (60) gives

Cm+1doub

��B �x, γ−mr��� ≤ Cm+1doub

����B�x, 12γ−1cr
����� .

Thus in the case 0 < r ≤ γc−1r0, we can apply (65) using 1
2γ
−1cr ≤ 1

2r0 to obtain

Cm+1doub

����B�x, 12γ−1cr
����� ≤ Cm+1doubC1

����B�x, 12γ−1cr
�
∩B (x0, r0)

���� .
Combining estimates yields

|B0 (x, γr)|≤Cm+1doubC1

����B�x, 12γ−1cr
�
∩B (x0, r0)

���� (66)

≤Cm+1doubC1 |B (x, r) ∩B (x0, r0)|
=Cm+1doubC1 |B0 (x, r)| ,

for 0 < r ≤ γc−1r0, upon using another application of (60) with 1
2γ
−1cr < cr. On

the other hand, for γc−1r0 < r <∞ we have

|B0 (x, γr)| ≤ |B (x0, r0)| = |B (x, r) ∩B (x0, r0)| , (67)

since by the engulfing property (56), together with (60) and γr0 < cr, we have
B (x0, r0) ⊂ B (x, γr0) ⊂ B (x, r). Combining (66) and (67) yields (62) for the sets
in (64), and this completes the proof of Lemma 30.

There is an analogous result for the restriction of a homogeneous space B = (Ω,B)
with B = {B (x, r)}x∈Ω,0<r<∞ to one of its balls B (x0, r0), x0 ∈ Ω and 0 < r0 <∞.
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2.2.1 Local and extendible spaces

In our construction of the noninterference balls A (x, r) in (38), and also in the con-
struction of the flag balls B (x, r) in (88) below (actually preballs in our terminology
since monotonicity may fail for flag balls), we only define the balls for x ∈ Ω and
0 < r < δ dist (x,∂Ω) for some δ > 0. Recall that dist (x, ∂Ω) denotes the Euclidean
distance from x to ∂Ω as in the Convention in subsection 1.1 of the introduction.
Nevertheless, in order to take advantage of the machinery in the subsection above,
we need to define the balls for all 0 < r <∞, while retaining all pertinent properties
in the extension. To accomplish this effectively, we first introduce the concept of a
δ-local prehomogeneous space, and the definition of an extendible δ-local prehomo-
geneous space. Then we show that every δ-local prehomogeneous space is locally
extendible to a prehomogeneous space. The proof of this result is rather technical,
and is not needed until subsection 4.5 on reducing the proofs of our extensions of
Hörmander’s theorem.

Definition 31 A pair (Ω,B) where Ω is an open subset of Rn and

B = {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω)

is a family of nonempty open subsets of Ω for some δ > 0, is a δ-local prehomogeneous
space if the following δ-local analogues of (56), (58), (60) and (62) hold:

B (x, r) ∩B (y, r) 9= φ =⇒ B (y, r) ⊂ B (x, γr) , x, y ∈ Ω, (68)

0< r < δ dist (y, ∂Ω) , 0 < γr < δ dist (x,∂Ω) ;

∩0<r<δ dist(x,∂Ω)B (x, r) = {x} , x ∈ Ω; (69)

B (x, r) ⊂ B (x, s) , x ∈ Ω, for 0 < r ≤ cs < s < δ dist (x,∂Ω) ; (70)

|B (x, γr)| ≤ Cdoub |B (x, r)| , x ∈ Ω, 0 < γr < δ dist (x, ∂Ω) . (71)

It is convenient to refer to the open sets B (x, r) with x ∈ Ω and 0 < r <
δ dist (x, ∂Ω) as δ-local preballs. We also define a δ-local homogeneous space in the
analogous way using in place of the mononicity condition (57), the δ-local mononicity
condition,

∪0<r<sB (x, r) = B (x, s) , x ∈ Ω, 0 < s < δ dist (x, ∂Ω) . (72)

All of the results in this subsubsection have obvious variants for a δ-local homoge-
neous space, but to save notation, we will not explicitly point them out. In order to
help clarify matters, we will use B to denote a δ-local prehomogeneous space and H
to denote a prehomogeneous space for the remainder of this subsubsection.
We observe that a δ-local prehomogeneous space B = (Ω,B) with

B = {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω)

on Ω induces a δ0-local prehomogeneous space B0 = (Ω0,B0) with

B0 = {B0 (x, r)}x∈Ω0,0<r<δ0 dist(x,∂Ω0)

on Ω0 for any open subset Ω0 of Ω and any positive δ0 by restricting x and r, i.e.

B0 (x, r) = B (x, r) , x ∈ Ω0, 0 < r < δ0 dist (x, ∂Ω0) ,
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provided the following two conditions hold:

δ0 dist (x, ∂Ω0)≤ δ dist (x, ∂Ω) for x ∈ Ω0, (73)

B (x, r)⊂Ω0, for x ∈ Ω0, 0 < r < δ0 dist (x,∂Ω0)

In addition, a prehomogeneous space H = (Ω,B) on Ω induces a δ-local prehomo-
geneous space on Ω for any 0 < δ < ∞ simply by restricting r. Unfortunately, not
all δ-local prehomogeneous spaces arise in this useful fashion, i.e. not all δ-local
prehomogeneous spaces B = (Ω,B) with B = {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω), can have
preballs defined for x ∈ Ω and r ≥ δ dist (x, ∂Ω) as well in such a way that the
resulting collection of open sets {B (x, r)}x∈Ω,0<r<∞ forms a prehomogeneous space
on Ω.

Definition 32 A δ-local prehomogeneous space B = (Ω,B) with

B = {B (x, r)}x∈Ω,0<r<δdist(x,∂Ω)

on Ω is said to be extendible if there is a prehomogeneous space H∗ = (Ω,B∗) with

B∗ = {B∗ (x, r)}x∈Ω,0<r<∞

on Ω such that

B∗ (x, r) = B (x, r) , x ∈ Ω, 0 < r < δ dist (x,∂Ω) .

Our main result in this subsubsection is that a δ-local prehomogeneous space on
Ω is ”locally” extendible, in a sense to be made precise below, provided our standing
assumption

B (x, r) ⊂ D (x,Ceucr) , 0 < r < δ dist (x,∂Ω) , (74)

is in force, δ satisfies

δ < C−1eucmin
�
1

2
, γ (γ − 1)

�
, (75)

where γ is as in (68), and the following ”relative proportion” condition holds:

|B (x, r)| ≤ C1 |B (x, r) ∩B (y, s)| , for y ∈ Ω, x ∈ B (y, s) , 0 < 2r ≤ s < δ dist (y, ∂Ω) .
(76)

Note that if δ satisfies (75), then the δ-local preball B (x, r) is defined in (76) since
0 < r < δ dist (x,∂Ω) then holds automatically. Indeed,

δ dist (x,∂Ω) ≥ δ dist (y, ∂Ω)− δ |x− y| ≥ s− δCeucs >
s

2
,

since δ < C−1euc
1
2 , and so r ≤

s
2 < δ dist (x,∂Ω).

Proposition 33 Let B = (Ω,B) with B = {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω) be a δ-local
prehomogeneous space on Ω satisfying (74), (75) and (76). Then for every x0 ∈ Ω,
there is an open subset Ω0 ⊂ Ω and a positive number δ0 satisfying (73) such that
the δ0-local prehomogeneous space B0 induced on Ω0 by B is extendible.

We will use Lemma 30, as well as the following definition and lemma, in the proof
of Proposition 33.
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Definition 34 Let B = (Ω,B) with B = {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω) be a δ-local
prehomogeneous space on Ω satisfying (74) and (75). Given x0 ∈ Ω and a number
r0 such that

0 < γ2r0 < δ dist (x0, ∂Ω) , (77)

we define a localized collection

B∗ (x0, r0) = {B∗ (x, r)}x∈B(x0,r0),0<r<∞

of open subsets of B (x0, r0) by

B∗ (x, r) =
�
B (x, r) ∩B (x0, r0) if x ∈ B (x0, r0) , 0 < r ≤ γr0
B (x0, r0) if x ∈ B (x0, r0) , r ≥ γr0

. (78)

Note that B∗ (x, r) in (78) of Definition 34 is well-defined. To see this, we first
claim that if x ∈ B (x0, r0) and 0 < r ≤ γr0, then 0 < r < δ dist (x, ∂Ω) so
that B (x, r) is defined. Indeed, B (x0, r0) ⊂ D (x0, Ceucr0) by (74), and so if x ∈
B (x0, r0), then |x− x0| < Ceucr0. Thus by (75) and (77),

δ dist (x, ∂Ω) ≥ δ dist (x0, ∂Ω)− δ |x− x0| > γ2r0 − δCeucr0 > γr0, (79)

since δ < C−1eucγ (γ − 1), which proves our claim. Of equal importance is the fact that
B (x0, r0) ⊂ B (x, γr0) if x ∈ B (x0, r0), which follows from (68) since x ∈ B (x0, r0)∩
B (x, r0), and where the conditions required by (68) follow from 0 < γ2r0 < δ and
(79). Thus for r = γr0, the two definitions in (78) coincide, and this completes the
proof that B∗ (x, r) in (78) is well-defined.

Lemma 35 Let Ω be an open subset of Rn, δ > 0 satisfy (75) and let B = (Ω,B) with
B = {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω) be a δ-local prehomogeneous space on Ω satisfying
(74) and (76). Fix x0 ∈ Ω and r0 satisfying (77). Let Ω∗ = B (x0, r0) and Ω0 =
B
�
x0, cγ

−1r0
�
where c is as in (70). Then H∗ = (Ω∗,B∗ (x0, r0)), with B∗ as in

Definition 34, is a prehomogeneous space on Ω∗,

Ω0 = B
∗ �x0, cγ−1r0� ,

and we have

B∗ (x, r) = B (x, r) , for x ∈ Ω0, 0 < r < cγ−1r0, (80)

and also the analogue of (65) for H∗ and its preball Ω0 = B∗
�
x0, cγ

−1r0
�
:

|B∗ (x, r)| ≤ C
��B∗ (x, r) ∩B∗ �x0, cγ−1r0��� , (81)

for x ∈ B∗
�
x0, cγ

−1r0
�
, 0 < r ≤ 1

2
cγ−1r0.

Proof. We first show that H∗ is a prehomogeneous space on Ω∗. It is not hard to ver-
ify properties (56), (58), and (60) for the family B∗ (x0, r0) = {B∗ (x, r)}x∈Ω∗,0<r<∞
on Ω∗ = B (x0, r0). For example, to verify the engulfing property (56), suppose
x, y ∈ Ω∗ = B (x0, r0), 0 < r < ∞ and B∗ (x, r) ∩ B∗ (y, r) 9= φ. In the case
0 < r ≤ r0, we have

γr ≤ γr0 < δ dist (x, ∂Ω)

by (79), and so from (68), we obtain B (y, r) ⊂ B (x, γr), and hence also B∗ (y, r) ⊂
B∗ (x, γr). On the other hand, if r > r0, then B∗ (x, γr) = B (x0, r0) by (78) and
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B∗ (yx, r) ⊂ B∗ (x, γr) is trivial. Property (58) is immediate and (60) follows from
(70) if s ≤ γr0, and is trivial if s > γr0, since then B∗ (x, s) = B (x0, r0) by (78).
We now prove the doubling property (62) for the family B∗ (x0, r0) using the

arguments in the proof of Lemma 30 of the previous subsection. First choose m > 1
so large that γ1−m < min

�
1
2 , c
�
. Then for 0 < r ≤ r0, we have from m applications

of (71) using (79),

|B∗ (x, γr)|≤ |B (x, γr)| ≤ Cmdoub
��B �x, γ1−mr��� (82)

≤CmdoubC1
��B �x, γ1−mr� ∩B (x0, r0)�� ,

and followed by an application of (70) using γ1−mr < cr, the above is at most

CmdoubC1 |B (x, r) ∩B (x0, r0)| = CmdoubC1 |B∗ (x, r)| .

On the other hand, if r > r0, we note that B∗ (x, γr) = B (x0, r0) = B∗ (x, γr0) by
(78). Thus from the case r = r0 of (82), we obtain

|B∗ (x, γr)| = |B∗ (x, γr0)| ≤ CmdoubC1
��B �x, γ1−mr0� ∩B (x0, r0)�� .

We now consider the cases r0 < r ≤ γr0 and r > γr0 separately. In the former case,
we use (70) with γ1−mr0 < cr to obtain��B �x, γ1−mr0� ∩B (x0, r0)�� ≤ |B (x, r) ∩B (x0, r0)| = |B∗ (x, r)| ,
while in the latter case, (78) yields��B �x, γ1−mr0� ∩B (x0, r0)�� ≤ |B (x0, r0)| = |B∗ (x, r)| .
This completes the proof of (62) for the family B∗ (x0, r0), and thus establishes that
H∗ is a prehomogeneous space on Ω∗.
Since γ > 1, (70) yieldsΩ0 = B

�
x0, cγ

−1r0
�
⊂ B (x0, r0) and so Ω0 = B∗

�
x0, cγ

−1r0
�
.

Now we claim that if x ∈ Ω0 = B
�
x0, cγ

−1r0
�
and 0 < r < cγ−1r0, then

B∗ (x, r) = B (x, r) ∩B (x0, r0) = B (x, r) .

Indeed,
x ∈ B

�
x0, cγ

−1r0
�
⊂ B

�
x0, γ

−1r0
�

(83)

by (70), and so B
�
x, γ−1r0

�
∩B

�
x0, γ

−1r0
�
is not empty since it contains x. Thus

(68) implies that
B
�
x, γ−1r0

�
⊂ B (x0, r0) , (84)

provided the two conditions required by (68) hold. The two conditions required by
(68) for this application are

0 < γ−1r0 < δ dist (x, ∂Ω) and 0 < r0 < δ dist (x0, ∂Ω) .

Now the second of these follows immediately from the hypothesis 0 < γ2r0 <
δ dist (x0, ∂Ω), and the first follows from (79). This proves (84), and hence by
(70) with r < cγ−1r0, we obtain

B (x, r) ⊂ B
�
x, γ−1r0

�
⊂ B (x0, r0)

as required.
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To see that B∗ (x0, r0) and Ω0 satisfy (81), take y = x0 and s = cγ−1r0 in (76)
and use (80) together with the fact that

s = cγ−1r0 < γ2r0 < δ dist (x0, ∂Ω) .

This completes the proof of Lemma 35.

Proof. (of Proposition 33) Given x0 ∈ Ω and a number r0 satisfying (77), let
Ω0 and Ω∗ be as in Lemma 35, so that H∗ = (Ω∗,B∗ (x0, r0)) is a prehomoge-
neous space on Ω∗. By Lemma 30, the restriction of H∗ to the preball Ω0 =
B
�
x0, cγ

−1r0
�
= B∗

�
x0, cγ

−1r0
�
is a prehomogeneous space H∗0 = (Ω0,B∗0) on Ω0

where B∗0 = {B∗0 (x, r)}x∈Ω0,0<r<∞ and

B∗0 (x, r) = B
∗ (x, r) ∩B

�
x0, cγ

−1r0
�
, x ∈ Ω0, 0 < r <∞.

Note that hypothesis (65) of Lemma 30 holds for H∗ and its preball Ω0 by (81) of
Lemma 35. We now claim that if

δ0 = min

�
C−1euc,

cγ−1r0
diam (Ω0)

�
, (85)

then (73) holds, and H∗0 is an extension of B0, the δ0-local prehomogeneous space in-
duced on Ω0 by B. Indeed, B0 = (Ω0,B0) where B0 = {B0 (x, r)}x∈Ω0,0<r<δ0 dist(x,∂Ω0)
and

B0 (x, r) = B (x, r) , x ∈ Ω0 = B
�
x0, cγ

−1r0
�
, 0 < r < δ0 dist (x, ∂Ω0) .

We claim that (73) holds. Indeed, if x ∈ Ω0 and r satisfies 0 < r < δ0 dist (x, ∂Ω0),
we have

0 < r < δ0 dist (x, ∂Ω0) ≤
dist (x, ∂Ω0)

diam (Ω0)
cγ−1r0 ≤ cγ−1r0,

which when combined with (79) yields

0 < r < cγ−1r0 < γr0 < δ dist (x, ∂Ω) .

This establishes the first assertion in (73). Moreover, we also have B∗ (x, r) = B (x, r)
by (80), and then from (74) that

B∗ (x, r) = B (x, r) ⊂ D (x,Ceucr) ⊂ Ω0,

since Ceucr < Ceucδ0 dist (x, ∂Ω0) ≤ dist (x, ∂Ω0), which is the second assertion in
(73). Thus the induced space B0 is defined and

B∗0 (x, r) = B
∗ (x, r) ∩Ω0 = B (x, r)

for x ∈ Ω0 and 0 < r < δ0 dist (x, ∂Ω0). This shows that H∗0 is an extension of B0,
and completes the proof of Proposition 33.

2.2.2 Construction of the flag balls

We have already defined the family A of ”noninterference balls” A (x, r) used in the
statement and proof of Theorem 15, and given in (38) as

A (x, r) =
n\
j=1

(xj −Aj (x, r) , xj +Aj (x, r))
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where Aj (x, r) =
U r
0
aj (x1 + t, x2, ..., xn) dt is defined when the segment joining x

and x+ (r, 0, ..., 0) lies in Ω. We will now construct the ”flag” balls B (x, r) used in
the proof of Theorem 13.
We assume the vector fields {Xj}nj=1 =

q
∂
∂x1
, a2 (x)

∂
∂x2
, ..., an (x)

∂
∂xn

r
are con-

tinuous in Ω, and that aj (x) is Lipschitz continuous in x2, ..., xn uniformly in x1,
and reverse Hölder of infinite order in each variable xi with i 9= j, uniformly in the
remaining variables. We begin with some heuristics. Our goal is to use the flag
condition to construct a family of open rectangles

B (x, r) =
n\
j=1

(xj −Bj (x, r) , xj +Bj (x, r))

for x ∈ Ω, 0 < r < δ dist (x, ∂Ω), that are related to the vector fields {Xj}nj=1 in the
sense that there are positive constants c, C such that

cBj (x, r) ≤ sup
z∈B(x,r)

raj (z) ≤ CBj (x, r) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) , (86)

for 1 ≤ j ≤ n. Note that (86) says that the jth side length Bj (x, r) of the rectangle
B (x, r) is comparable to r times the supremum of aj over the rectangle B (x, r).
If the aj were essentially constant, this would be the maximum distance a subunit
curve could travel in the jth direction for time r, and the rectangle B (x, r) would
be equivalent to the Fefferman-Phong ball K (x, r). For us, the importance of (86)
is that it provides a key link in establishing that the rectangles B (x, r) lead to a
prehomogeneous space, as in Definition 28 above. The greedy algorithm we employ
below actually achieves the following stronger form of (86): there are positive con-
stants c, C such that for every x ∈ Ω, 0 < r < δ dist (x, ∂Ω), there is a permutation
{j1, j2, ..., jn} of {1, 2, ..., n} with j1 = 1 satisfying

cBji (x, r)≤ sup
zjc=xjc ,c≥i and |zjc−xjc |≤Bjc (x,r),c<i

raji (z) (87)

≤ sup
z∈B(x,r)

raji (z) ≤ CBji (x, r) ,

x ∈ Ω, 0 < r < δ dist (x, ∂Ω) and 1 ≤ i ≤ n. See Remark 24 in subsection 5.2 for a
proof of (87). Since we are assuming that the aj are reverse Hölder in x1 uniformly
in x2, ..., xn, it follows that

sup
z∈B(x,r)

rai (z) is essentially sup
z∈B(x,r)

Ai (z, r) ,

and this motivates the use of Ai to implement our greedy algorithm, which we now
describe.
We claim there is a sufficiently small δ > 0, depending only on the dimension n

and Cmax in (37), in order that the following definitions make sense. Fix x ∈ Ω and
0 < r < δ dist (x,∂Ω). By (39), we have

Aj (x, r) =

] r

0

aj (x1 + t, x2, ..., xn) dt,

1 ≤ j ≤ n, so that A1 (x, r) = r. Now we inductively define a rearrangement
{j2, ..., jn} of {2, ..., n} and nonnegative numbers Bj2 (x, r) , ..., Bjn (x, r) as follows:
First define

Aj2 (x, r) = max
2≤j≤n

Aj (x, r) ,

Bj2 (x, r) =Aj2 (x, r) .
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Then for j 9= j2 set

Φ2j (x, r) = max
q
Aj (z, r) : |zi − xi| ≤ χ{j2} (i)Bi (x, r) , 1 ≤ i ≤ n

r
,

and define

Φ2j3 (x, r) =maxj 9=j2
Φ2j (x, r) ,

Bj3 (x, r) =Φ
2
j3 (x, r) .

Assuming Bj2 (x, r) , ..., Bjm (x, r) have already been defined, then for j /∈ {j2, ..., jm},
set

Φmj (x, r) = max
q
Aj (z, r) : |zi − xi| ≤ χ{j2,...,jm} (i)Bi (x, r) , 1 ≤ i ≤ n

r
,

and define

Φmjm+1
(x, r) = max

j /∈{j2,...,jm}
Φmj (x, r) ,

Bjm+1 (x, r) =Φ
m
jm+1

(x, r) .

This inductively defines Bj2 (x, r) , ..., Bjn (x, r).

Note : If we assume that the vector fields {Xj}nj=1 satisfy the flag condition 10,
then we have the important property that Bjm (x, r) > 0 for 2 ≤ m ≤ n and
r > 0.

We now define open rectangles

B (x, r) = (x1 − r, x1 + r)×
n\
j=2

(xj −Bj (x, r) , xj +Bj (x, r)) , (88)

for x ∈ Ω, 0 < r < δ dist (x, ∂Ω), which we refer to as ”flag balls”. Note again
that if δ is sufficiently small depending on Cmax in (37), then the rectangles B (x, r)
are well-defined and contained in Ω for x ∈ Ω, 0 < r < δ dist (x, ∂Ω). Finally, we
emphasize that the permutation {j2, ..., jn} of {2, ..., n} used to define the flag ball
B (x, r) depends on both x and r, and is analogous in spirit to the choice of N -tuple
used to compute a corresponding quasimetric in Chapter 1, section 4 of [33].

2.3 Comparability with the subunit balls
Let X1 = ∂

∂x1
, Xj = aj (x)

∂
∂xj
, 2 ≤ j ≤ n, be a diagonal collection of continuous

vector fields. We consider in this subsection the relationship of vector fields to families
of sets,

B = {B (x, r) : x ∈ Ω, 0 < r <∞} ,
that are not necessarily balls arising from a quasimetric, and such that the sets
B (x, r) are not necessarily contained in Ω. Such families include the ones with balls
B (x, r) and A (x, r) used in the proofs of Theorems 13 and 15, which turn out to be
δ-local prehomogeneous and homogeneous spaces, as well as the subunit balls

K = {K (x, r) : x ∈ Ω, 0 < r <∞}

with corresponding metric δ (x, y), constructed from the vector fields {Xj}nj=1 by
settingQ (x, ξ) =

Sn
j=1 (Xj (x) · ξ)

2 in Definition 3. The family of ballsK is generally
not a homogeneous space on Ω.
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Given a family of sets B = {B (x, r) : x ∈ Ω, 0 < r <∞, }, we define a family hB
of larger closed rectangles by

Bj (x, r) = sup
z∈B(x,r)

|zj − xj | , 1 ≤ j ≤ n, (89)

hB (x, r) = n\
j=1

[xj −Bj (x, r) , xj +Bj (x, r)] ,

hB=q hB (x, r) : x ∈ Ω, 0 < r <∞r ,
so that B (x, r) ⊂ hB (x, r). The number Bj (x, r) is half the jth ”side length” of the
smallest closed rectangular box hB (x, r) centered at x and containing B (x, r).
Given two families of sets B and F defined for x ∈ Ω, we say that B is Ω-locally

contained in F , written B ⊂ F (when Ω is understood from the context), if there are
positive constants C, δ such that

B (x, r) ⊂ F (x,Cr) , x ∈ Ω, 0 < Cr < δ dist (x,∂Ω) ,

where B (x, r) ∈ B and F (x,Cr) ∈ F . We say that B and F are Ω-locally equivalent ,
and write B ∼= F , if both B ⊂ F and F ⊂ B.
It turns out that the inclusion B ⊂ K is implied by the existence of the following

weak subrepresentation inequality relative to the vector fields {Xj}nj=1, for Lipschitz
functions f and a general homogeneous space B on Ω: for each y ∈ Ω, 0 < r <
δ dist (y, ∂Ω), there is a constant Cy,r such that

|f (x)− Cy,r| ≤ C
]
B(y,C0r)

|∇af (z)|
d (x, z)

|B (x, d (x, z))|dz, x ∈ B (y, r) , (90)

where ∇a =
�

∂
∂x1
, a2

∂
∂x2
, ..., an

∂
∂xn

�
, and d is the quasimetric for the family B of

d-balls B (x, s) with center x and radius s. Note that the integration on the right-
hand side is taken over an enlarged ball B (y,C0r), C0 ≥ 1. For the reverse inclusion
K ⊂ B, we assume the aj are Lipschitz continuous in x2, ..., xn and reverse Hölder of
infinite order in x1, uniformly in the other variables, and we also assume the following
condition limiting the size of the vector fields Xj = aj ∂

∂xj
on the sets in the family

B (which has no special structure now),

sup
z∈ hB(x,r)Aj (z, r) ≤ C

3Bj (x, r) , B (x, r) ∈ B, x ∈ Ω, 0 < r < δdist (x, ∂Ω) , (91)

for 1 ≤ j ≤ n, where Bj (x, r) is half the jth side length of the smallest rectangular
box hB (x, r) containing B (x, r), and Aj (x, r) = U r0 aj (x1 + t, x2, ..., xn) dt. Here the
inclusion obtained is actually hK ⊂ hB. Note that the noninterference condition 14
implies that the noninterference balls A (x, r) satisfy the size limiting condition (91).
We will see later in Lemma 66 that the flag balls B (x, r) also satisfy the size limiting
condition (91) under some natural hypotheses.

Proposition 36 Suppose X1 = ∂
∂x1
, Xj = aj (x) ∂

∂xj
, 2 ≤ j ≤ n, where the aj are

continuous in Ω, and let K be the family of subunit balls associated to the quadratic
form Q (x, ξ) =

Sn
j=1 (Xj (x) · ξ)

2 as in Definition 3. If the functions aj are Lipschitz
continuous in x2, ..., xn uniformly in x1, and reverse Hölder of infinite order in x1
uniformly in x2, ..., xn, and if B is a family of sets satisfying the size limiting condition
(91), then hK ⊂ hB. Conversely, if B is the family of balls in a general homogeneous
space on Ω, and satisfies the weak subrepresentation inequality (90), then B ⊂ K.
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Remark 9 In Proposition 36, one can weaken the subrepresentation inequality (90)
even further by adding to the right-hand side the average

Cr
1

|B (y, C0r)|

]
B(y,C0r)

|∇af (z)| dz. (92)

While this generally results in a strictly weaker condition, the average (92) is in fact
already dominated by the right-hand side of (90) if in addition to doubling, the balls
are reverse doubling of order one:

|B (x, r)| ≤ C r
t
|B (x, t)| , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) . (93)

The flag balls, noninterference balls, and subunit balls all satisfy (93) since they are
weakly monotone (60) and have diameters comparable to their radii.

Proof. (of Proposition 36) We first demonstrate that hK ⊂ hB if (91) holds along with
the other hypotheses on aj . Fix x ∈ Ω and 0 < r < δ dist (x, ∂Ω) with δ sufficiently
small. We will show that hK (x, r) ⊂ hB (x,C0r) for C0 a sufficiently large constant
independent of x and r > 0. Reorder variables so that Bj+1 (x,C0r) ≤ Bj (x,C0r)
for 2 ≤ j < n. Now a Lipschitz curve γ (t) =

�
γj (t)

�n
j=1

is subunit with respect

to the matrix


1 0 · · · 0
0 a2 (z)

2 · · · 0
...
...

. . .
...

0 0 · · · an (z)2

 if ��γ3j (t)�� ≤ 1√
n
aj (γ (t)) for a.e. t, and only if

��γ3j (t)�� ≤ aj (γ (t)) for a.e. t. Thus we have
Kj (x, r) = sup

���γj (t)− xj�� : 0 ≤ t ≤ r,γ (t) is subunit, γ (0) = x� (94)

≤ sup
�] r

0

��γ3j (s)�� ds : γ (s) is subunit, γ (0) = x�
≤ sup

�] r

0

aj (γ (s)) ds : γ (s) is subunit, γ (0) = x

�
.

Since aj is Lipschitz in x2, ..., xn and reverse Hölder of infinite order in x1, γ is
subunit with γ (0) = x, and X1 = ∂

∂x1
so that K1 (x, r) = r, we have for 2 ≤ j ≤ n,] r

0

aj (γ (s)) ds≤
] r

0

|aj (γ1 (s) , γ2 (s) , ..., γn (s))− aj (γ1 (s) , x2, ..., xn)| ds

+

] r

0

aj (γ1 (s) , x2, ..., xn) ds

≤
n[
i=2

r sup
z∈ hK(x,r)

����∂aj∂xi
(z)

����Ki (x, r) + r max
|z1−x1|≤r

aj (z1, x2, ..., xn)

≤Cr
n[
i=2

Ki (x, r) + C

] r

0

aj (x1 + t, x2, ..., xn) dt.

See Remark 5 for the interpretation of supz∈ hK(x,r)
���∂aj∂xi

���. In the final inequality above,
we have used that the reverse Hölder condition implies the doubling condition. It
thus follows upon taking the supremum over γ and summing in j that

n[
j=2

Kj (x, r)≤Cr
n[
j=2

n[
i=2

Ki (x, r) + C
n[
j=2

Aj (x, r)
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=Cr (n− 1)
n[
i=2

Ki (x, r) + C
n[
j=2

Aj (x, r) .

Now aj is reverse Hölder of infinite order in x1 and so Aj (x, r) is reverse doubling

in r: Aj (x, r) ≤ C
�
r
t

� hD
Aj (x, t), 0 < r ≤ t < ∞. Thus for r small enough and

C0 large enough, by absorbing the first term on the right above, and then applying
reverse doubling, we have

n[
j=2

Kj (x, r) ≤ C
n[
j=2

Aj (x, r) ≤
1

(n− 1)C3
n[
j=2

Aj (x,C0r)

where C 3 is the constant appearing in (91). Thus using (91) with C0r in place of r,
we obtain

K2 (x, r) ≤
n[
j=2

Kj (x, r) ≤
1

(n− 1)C3
n[
j=2

Aj (x,C0r) ≤
1

n− 1

n[
j=2

Bj (x,C0r) ≤ B2 (x,C0r) .

Recall that we reordered variables so that Bj+1 (x,C0r) ≤ Bj (x,C0r) for 2 ≤ j < n.
We now proceed by induction. So assume that Ki (x, r) ≤ Bi (x,C0r) for 2 ≤ i ≤

c − 1. Then since aj is Lipschitz in x2, ..., xn and reverse Hölder of infinite order in
x1, we have for j ≥ c and γ as above,] r

0

aj (γ (s)) ds≤
] r

0

��aj (γ1 (s) , γ2 (s) , ..., γn (s))− aj �γ1 (s) , ..., γc−1 (s) , xc, ..., xn��� ds
+

] r

0

aj
�
γ1 (s) , ..., γc−1 (s) , xc, ..., xn

�
ds

≤
n[
i=c

r sup
z∈ hK(x,r)

����∂aj∂xi
(z)

����Ki (x, r) + raj
�
γ1 (s0) , ..., γc−1 (s0) , xc, ..., xn

�
≤Cr

n[
i=c

Ki (x, r) + C

] r

0

aj
�
x1 + t, γ2 (s0) , ..., γc−1 (s0) , xc, ..., xn

�
dt,

for some s0 ∈ [0, r], where we have used that γ1 (s0) ∈ [x1 − r, x1 + r]. However, since
|γi (s0)− xi| ≤ Ki (x, r) ≤ Bi (x,C0r) for 2 ≤ i ≤ c−1, the reverse doubling property
of Aj

��
x1, γ2 (s0) , ..., γc−1 (s0) , xc, ..., xn

�
, r
�
and (91) show that for c ≤ j ≤ n,

C

] r

0

aj
�
x1 + t, γ2 (s0) , ..., γc−1 (s0) , xc, ..., xn

�
dt

=CAj
��
x1, γ2 (s0) , ..., γc−1 (s0) , xc, ..., xn

�
, r
�

≤ 1

2nC 3
Aj
��
x1, γ2 (s0) , ..., γc−1 (s0) , xc, ..., xn

�
, C0r

�
≤ 1

2n
Bj (x,C0r) ,

for C0 sufficiently large. Thus] r

0

aj (γ (s)) ds ≤ Cr
n[
i=c

Ki (x, r) +
1

2n
Bj (x,C0r) ,

and it follows upon taking the supremum over γ and summing in j, that
n[
j=c

Kj (x, r) ≤ Cr
n[
j=c

n[
i=c

Ki (x, r) +
1

2n

n[
j=c

Bj (x,C0r) .
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For r sufficiently small, we thus obtain that

Kc (x, r) ≤
n[
j=c

Kj (x, r) ≤
1

n

n[
j=c

Bj (x,C0r) ≤ Bc (x,C0r) ,

and this completes the proof by induction.
Combining the above inequalities yields

hK (x, r) = [x1 − r, x1 + r]× n\
j=2

[xj −Kj (x, r) , xj +Kj (x, r)]

⊂ [x1 − r, x1 + r]×
n\
j=2

[xj −Bj (x,C0r) , xj +Bj (x,C0r)]

⊂ hB (x,C0r) ,
provided B1 (x,C0r) ≥ r, which follows from (91) with C0 sufficiently large.
Conversely, we show that B ⊂ K if B is a general homogeneous space on Ω

satisfying (90) and the aj are continuous in Ω. First suppose that aj ≥ ε > 0 for
2 ≤ j ≤ n, and some ε > 0. If δ (x, y) denotes the subunit distance function, and if
we fix y ∈ Ω, 0 < r < δ dist (y, ∂Ω), and set f (x) = δ (x, y), then (4) shows that f
is Lipschitz continuous since

|f (x)− f (z)| ≤ δ (x, z) ≤ |x− z|
ε

,

where the final inequality follows upon considering the subunit curve

γ (t) = x+
ε

|z − x| t (z − x) , 0 ≤ t ≤ |x− z|
ε

,

joining x to z. From the weaker version of (90), with (92) added to the right-hand
side, we obtain

|δ (x, y)− Cy,r| ≤ C
]
B(y,Cr)

|∇af (z)|
d (x, z)

|B (x, d (x, z))|dz (95)

for x ∈ B (y, r).
We now claim that

|∇af (x)| ≤
√
n a.e. x, for f (x) = δ (x, y) . (96)

This was proved in [12] and [11] with a larger constant and in the sense of distri-
butions. Here we give an alternative simpler proof. Indeed, for 1 ≤ j ≤ n and
β < 1, the curve γj (t) = x + βtaj (x) ej is subunit for t sufficiently small since
γ3j (t) = βaj (x) ej and |βaj (x)| < aj (x+ βtaj (x) ej) for small t by the continuity
of aj . Thus δ (x, x+ βtaj (x) ej) ≤ |t| for t small, and since δ is a metric,����βaj (x) ∂f

∂xj
(x)

����= ����limt→0 f (x)− f (x+ βtaj (x) ej)

t

����
≤ lim sup

t→0

����δ (x, x+ βtaj (x) ej)

t

���� ≤ 1,
for β < 1 and 1 ≤ j ≤ n. Thus |∇af (x)| =

�Sn
j=1

���aj (x) ∂f
∂xj

(x)
���2� 1

2

≤
√
n.
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It now follows from (95) and the inequality]
B(y,Cr)

d (x, z)

|B (x, d (x, z))|dz ≤ C
3r, x ∈ B (y, r) , (97)

that
|δ (x, y)− Cy,r| ≤ Cr (98)

for x ∈ B (y, r). To see (97), we note that B (y,Cr) ⊂ B (x, γCr) by the engulfing
property of the balls, and so we compute]
B(y,Cr)

d (x, z)

|B (x, d (x, z))|dz ≤
]
B(x,γCr)

d (x, z)

|B (x, d (x, z))|dz

=
∞[
j=0

]
B(x,2−jγCr)\B(x,2−j−1γCr)

d (x, z)

|B (x, d (x, z))|dz

≤
∞[
j=0

2−jγCr
|B (x, 2−j−1γCr)|

��B �x, 2−jγCr� \B �x, 2−j−1γCr���
≤ γC2

∞[
j=0

2−jr = C 3r,

by the doubling property
��B �x, 2−jγCr��� ≤ C ��B �x, 2−j−1γCr���. Continuing with

(98), we thus obtain

δ (x, y) = δ (x, y)− δ (y, y) ≤ |δ (x, y)− Cy,r|+ |δ (y, y)− Cy,r| ≤ Cr

for x ∈ B (y, r), and so B (y, r) ⊂ K (y, Ct) for 0 < r < t with a constant C
independent of 0 < ε < 1.
It remains to prove the general case. Given aj , define aεj = aj + ε for 0 < ε < 1.

Then (90) remains valid uniformly in 0 < ε < 1 for aεj in place of aj , since neither
the balls B nor the quasimetric d vary with ε. If we denote the corresponding
subunit balls by Kε = {Kε (y, r) : y ∈ Ω, 0 < r < r0}, then we have proven above
that B ⊂ Kε, i.e. B (y, r) ⊂ Kε (y,Cr), uniformly in ε > 0. We now show that

∩0<ε<1Kε (y, r) ⊂ ∩0<ε<1K
�
y,
√
nr + ε

�
.

To prove this, let x ∈ ∩0<ε<1Kε (y, r). Then for every 0 < ε < 1, there is a Lipschitz
curve γε (t) =

�
γεj (t)

�n
j=1

satisfying (note that we may stop the curve γε as soon as
it hits x)

γε (0) = y,

γε (r) = x,����γεj�3 (t)���≤ aj (γε (t)) + ε.

Since the aj are bounded, the family {γε (t)}0<ε<1 is equicontinuous, and there
is a continuous curve γ (t) and a sequence {εi}∞i=1 with limi→∞ εi = 0, such that
limi→∞ γεi (t) = γ (t) uniformly for t ∈ [0, r]. It follows easily that γ (t) is Lipschitz
and satisfies

γ (0) = y,

γ (r) = x,��γ3j (t)��≤ aj (γ (t)) ,
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where the third line follows by considering a fixed difference quotient and letting
i→∞. Indeed,����γj (t+ h)− γj (t)

h

����= lim
i→∞

����γεij (t+ h)− γεij (t)

h

����
≤ lim inf

i→∞
{aj (γεi (t+ cih)) + εi}

= aj (γ (t+ ch))

for some 0 ≤ c ≤ 1 upon taking a further subsequence such that ci → c, and
using the uniform convergence of γεi to γ along with the continuity of aj . Now
let h → 0 and use the continuity of aj again to obtain

��γ3j (t)�� ≤ aj (γ (t)). Thus
δ (x, y) ≤ r

√
n < r

√
n + ε for all ε > 0, and we’re done. Observe that the sharper

containment
∩0<ε<1Kε (y, r) ⊂ ∩0<ε<1K (y, r + ε)

can be obtained by considering
�Sn

j=1 γ
3
j (t) ξj

�2
in place of

��γ3j (t)��2, as is done in
the proof of Lemma 50 below.

Remark 10 The proof of Proposition 36 actually yields a bit more. To describe
this, we introduce the family of rectangles K∗ = {K∗ (x, r) , x ∈ Ω, 0 < r < r0}, not
necessarily arising from a homogeneous space, that are related to the subunit balls
K = {K (x, r)} as follows. Define

K∗j (x, r) = sup
�] r

0

aj (γ (s)) ds : γ (s) is subunit, γ (0) = x

�
,

K∗ (x, r) =
n\
j=1

�
xj −K∗j (x, r) , xj +K∗j (x, r)

�
,

for x ∈ Ω, 0 < r < δ dist (x, ∂Ω), so that by (94) we have

K (x, r) ⊂ hK (x, r) ⊂ K∗ (x, r) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) .

The first half of the proof of Proposition 36 shows that if the size condition (91) holds,
along with the other hypotheses on aj, then K∗ ⊂ hB.
Remark 11 Proposition 36 admits a more general extension to continuous quadratic
forms Q. Let K be related to Q as in Definition 3.

1. Then B ⊂ K if B is a general homogeneous space of balls B (x, r) with quasi-
metric d (x, y), and Q (x, ξ) is a continuous nonnegative semidefinite quadratic
form satisfying the weak subrepresentation property that for each y ∈ Ω, 0 <
r < δ dist (y, ∂Ω), there is a constant Cy,r such that

|f (x)− Cy,r| ≤ C
]
B(y,C0r)

n∇f (z)nQ
d (x, z)

|B (x, d (x, z))|dz, x ∈ B (y, r) ,

for all f Lipschitz on B (y, r).

2. Conversely, let Q (x, ξ) = ξ3Q (x) ξ =
Sn
i,j=1 qij (x) ξiξj with q11 (x) ≡ 1 and

set Aj (x, r) =
U r
0
qjj (x1 + t, x2, ..., xn) dt, 1 ≤ j ≤ n. If the diagonal entries

qjj are Lipschitz continuous in x, and reverse Hölder of infinite order in xi
for i 9= j uniformly in the remaining variables, and if B is a family of sets
satisfying the size limiting condition (91), then hK ⊂ hB.
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The first assertion in the remark is proved as in Proposition 36, but using eigen-
vectors and eigenvalues of Q (x) as in the proof of Proposition 51. As for the second
assertion, the proof in Proposition 36 shows that hKdiag ⊂ hB where Kdiag denotes the
subunit balls corresponding to the diagonal form Qdiag (x, ξ) =

Sn
j=1 qjj (x) ξ

2
j . NowhK ⊂ hKdiag follows from the inequality Q (x, ξ) ≤ nQdiag (x, ξ):

ξ3Qξ =
n[

i,j=1

(ξiei)
3
Q
�
ξjej

�
≤

n[
i,j=1

1

2

q
(ξiei)

3
Q (ξiei) +

�
ξjej

�3
Q
�
ξjej

�r
= nξ3Qdiagξ.

2.3.1 Examples

We begin this subsubsection with a pathological example that graphically illustrates
the breakdown of Sobolev and Poincaré inequalities for the subunit balls when con-
tinuity of the vector fields is violated.

Example 37 Let n = 2 and set a1 ≡ 1 and a2 (x1, x2) = χQ (x1), where Q denotes
the rational numbers. Then the flag balls degenerate to horizontal line segments, the
divergence form operator L = ∂

∂x1
a1

∂
∂x1

+ ∂
∂x2
a2

∂
∂x2

= ∂2

∂x21
fails spectacularly to be

subelliptic, and yet the subunit balls are equivalent to Euclidean balls. Indeed, the
curves

t→ (x1 + t, x2)

are subunit for all x ∈ R×R, and the curves

t→ (x1, x2 + t)

are subunit for all x ∈ Q × R. Any two points x and y can thus be joined by a
subunit curve of length |x1 − y1|+ |x2 − y2|, by proceeding horizontally from (x1, x2)
to (q, x2), where q is rational and lies between x1 and y1, then vertically from (q, x2)
to (q, y2), and finally horizontally from (q, y2) to (y1, y2).

The difficulty in the above example is that the vertical subunit curves cannot be
perturbed in the horizontal direction, since a2 fails to be continuous anywhere. This
precludes the possibility of a subrepresentation inequality for f (x) with absolutely
continuous kernel.
The following example of analytic vector fields in R3 satisfies the flag condition

with m = 2 and #I1 = 1, but the rectangular boxes A (x, r) fail to satisfy the
engulfing property, and hence fail to satisfy Definition 14 as well.

Example 38 Let

a1 (x) = 1,

a2 (x) = 3x
2
1,

a3 (x) = 9x
8
1 + x

2
2.

With y = (0, y2, 0), 0 ≤ y2 ≤ 1, we have

A2 (y, r) =

] r

0

a2 (t, y2, 0) dt = r
3,

A3 (y, r) =

] r

0

a3 (t, y2, 0) dt = r
9 + y22r.
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Then the rectangular boxes A ((0, 0, 0) , r) and A
��
0, r3, 0

�
, r2
�
are given by

A ((0, 0, 0) , r) = [−r, r]×
�
−r3, r3

�
×
�
−r9, r9

�
,

A
��
0, r3, 0

�
, r2
�
=
�
−r2, r2

�
×
�
r3 − r6, r3 + r6

�
×
�
−r8 − r18, r8 + r18

�
,

and neither is contained in a fixed multiple of the other, uniformly in 0 < r < 1,
despite having nonempty intersection. On the other hand, one easily computes that
for 0 ≤ y2 ≤ r, the flag balls B ((0, y2, 0) , r), which do satisfy the engulfing property,
are comparable to the rectangular boxes

[−r, r]×
�
y2 − r3, y2 + r3

�
×
�
−y22r − r7, y22r + r7

�
.

3 Proof of the general subellipticity theorem

The purpose of this section is to prove Theorem 6 by the Moser iteration method.
We begin by establishing in subsection 3.1 a reverse Sobolev inequality of Cacciop-
poli type for weak (sub, super) solutions u to (22). Building on an idea of Taylor
[44], our approach is to compute the equation satisfied by uβ, β ∈ R, and then esti-
mate its energy. Then in subsection 3.2 we will use our homogeneous space structure
with doubling (13), the Sobolev inequality (15), and the ”accumulating sequence of
Lipschitz cutoff functions” condition (20) to iterate the reverse Sobolev inequality
against (15) to obtain local boundedness of weak solutions. In subsection 3.3 we in-
voke the Poincaré inequality (17) and the John-Nirenberg theorem on homogeneous
spaces to obtain a strong Harnack inequality for nonnegative weak solutions. Finally,
following Moser, who followed De Giorgi, we iterate the Harnack inequality in sub-
section 3.4, and use the containment condition (11), to obtain Hölder continuity of
weak solutions to (22).

Proof. (of Theorem 6) Let L = ∇3B (x)∇ where B (x) satisfies (27), and consider
the linear operator

L ≡ L+HR+ S3G+ F
where R = {Ri}Ni=1 and S = {Si}Ni=1 are collections of vector fields subunit with
respect to B (x), and F , G = {Gi}Ni=1 and H = {Hi}Ni=1 are measurable functions.
We must show that there is

α = α (K, ε, p, q, csym, Csym,Nq) > 0

such that every weak solution u of the equation

Lu = f +T3g (99)

in Ω satisfies

nunCα(K) ≤ C
�
K, p, q, csym, Csym, Nq, N

3
q, nunL2(Ω)

�
(100)

for all compact subsets K of Ω, inhomogeneous data f and g = {gi}Ni=1 satisfying
(24) and operator coefficients F , G = {Gi}Ni=1 and H = {Hi}Ni=1 satisfying (23) for
some q > Q = max {Q∗, 2σ3}, and collections of subunit vector fields R = {Ri}Ni=1,
S = {Si}Ni=1 and T = {Ti}

N
i=1. Here ε is as in (11), p > max {2σ3, 4} is as in (20), σ

is as in (15) and Q∗ is as in (9). Recall the definition of a classical weak (sub, super)
solution:
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Definition 39 A function u ∈W 1,2 (Ω) is a weak

 solution
subsolution
supersolution

 of

Lu+HRu+ S3Gu+ Fu = f +T3g (101)

in Ω if

−
]
(∇u)3 B∇w+

]
(HRu)w+

]
uGSw+

]
Fuw

=≥
≤

] fw+

]
gTw, (102)

for all nonnegative w ∈W 1,2
0 (Ω).

In the case of a weak solution, we may equivalently test (102) over all w ∈
W 1,2
0 (Ω). Here the juxtaposition of vectors in HR, GS and gT means

SN
i=1HiRi,SN

i=1GiSi and
SN

i=1 giTi respectively. Note that the integrals in (102) converge
absolutely since u ∈ W 1,2 (Ω), w ∈ W 1,2

0 (Ω), together with the Sobolev inequality
(15), imply that

u ∈ L2σloc (Ω) , w ∈ L2σ (Ω) , (103)

and so by Hölder’s inequality,
uw ∈ Lσ (Ω) ,

while our assumptions on the coefficients and data imply

F, f ∈Lσ3 (Ω) , (104)

G,H,g ∈L2σ3 (Ω) ,

which by Hölder’s inequality yields

Gu,Hw ∈ L2 (Ω) . (105)

Throughout this proof, we often use the notation

kU,W l=U 3BW,
nUn= kU,Ul

1
2 ,

where the underlying matrix is always assumed to be B as in the operator L under
question. Note by (27) that nUn2 ≈ Q (x,U) = nUnQ where n·nQ is given in (14).

Remark 12 For the notion of weak solution we are using here, namely that of a
solution u ∈W 1,2 (Ω) with test functions w ∈W 1,2

0 (Ω), we can significantly relax the
conditions on the data in order to make sense of (102). In fact, the usual Sobolev

embedding theorem in Euclidean space shows that u,w ∈ W 1,2 (Ω) ⊂ L
2n
n−2
loc (Ω) for

n ≥ 3, and so we need only assume f, F ∈ L
q
2

loc (Ω) and g,G,H ∈ L
q
loc (Ω) for q = n

(and q > 2 in the case n = 2). Note that since the balls B (x, r) in our homogeneous
space are by hypothesis contained in the Euclidean balls D

�
x, rc

�
, we have

cnr
n =

���D �x, r
c

���� ≥ |B (x, r)| ≥ cqrq
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for any q > Q, and it follows that Q ≥ n. In the appendix, we will consider other
notions of weak solution to (99), in particular that of u ∈W 1,2

Q (Ω) with test functions

in
�
W 1,2
Q
�
0
(Ω). Here W 1,2

Q (Ω) denotes the completion of Lip1 (Ω) under the norm

nwnW1,2
Q (Ω) =

�]
Ω

�
|w|2 + n∇wn2Q

�� 1
2

.

The integrals in (102) also make sense in this setting by the argument given above
using (15), (23) and (24). However, the gradients of elements in W 1,2

Q are no longer
functions, but rather certain Cauchy sequences. Further details are in subsection 6.7
of the appendix.

3.1 W-weak solutions and admissible compositions
We will employ an equality (see (117) below) which shows that certain nonlinear
operations on (sub, super) solutions to an equation yield (sub, super) solutions to a
related equation, but with a weaker notion of (sub, super) solution than the classical
one in Definition 39. We begin by introducing this weaker notion of weak (sub, super)
solution. We emphasize that this weaker definition, and the variant that follows, is
used only in the course of implementing Moser iteration in this proof, and does not
appear in statements of any theorems or propositions.

Definition 40 Let W be a subset of the nonnegative elements in W 1,2
0 (Ω). We say

that a function u ∈ W 1,2 (Ω) is a W-weak

 solution
subsolution
supersolution

 of the divergence form

equation (101) if the the integrals in (102) are absolutely convergent and the indicated
(in)equality holds for all w ∈W.

We also need a corresponding notion ofW-weak sense for more general equations
(inequalities) of the form

N[
j=1

Hj
�
T 3j Gj

�=≥
≤

F , (106)

where F is a function, G = (G1, ...,GN ) and H = (H1, ...,HN ) are collections of
functions, and T 3 = (T 31 , ..., T 3N ) is a collection of transposed subunit vector fields
(with respect to the matrix B (x)). The precise properties imposed on these functions
and vector fields will be described in Definition 41 below. The relation (106) includes
equations such as (116) below. Indeed, as we will see, F can include expressions of
the form h33 (u) (Tu)g + h33 (u) n∇un2, while

SN
j=1HjT 3j Gj can include expressions

of the form T3 (h3 (u)g) − S3 (h3 (u)uG) with Hj ≡ 1, as well as h3 (u)Lu. For the
latter, let N = n, Hj = h3 (u), Tj = ∂

∂xj
and Gj = [B (x)∇u]j , the jth component

of the vector B (x)∇u. The classical meaning attached to the relation (106) in the
weak sense is that

N[
j=1

]
Ω

Tj (wHj)Gj

=≥
≤

]
Ω

wF (107)

holds for all nonnegative w ∈ W 1,2
0 (Ω), provided the functions F ,G,H and vector

fields T in (106) result in absolutely convergent integrals in (107). We generalize this
as follows.
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Definition 41 Let W be a subset of the nonnegative elements in W 1,2
0 (Ω). Then

we say that (106) holds in the W-weak sense if the integrals in (107) are absolutely
convergent and the indicated (in)equality holds for all w ∈W.

Note that Definition 41 generalizes Definition 40 in the sense that u ∈W 1,2 (Ω) is

aW-weak

 solution
subsolution
supersolution

 of the divergence form equation (101) if and only if (101)
holds in the W-weak sense. The point of introducing the notion of W-weak sense
for the more general equations (inequalities) (106), is that the equations satisfied by
nonlinear functions of solutions u to (101), such as (111) below, are no longer of the
standard divergence form given in (101).
Now let u ∈ W 1,2 (Ω). We will compose u with nonlinear functions h of the

following ”admissible” form.

Definition 42 Let I be an interval and h ∈ C1 (I)∩C2pw (I) be positive and monotone
(i.e. either nondecreasing on I or nonincreasing on I), where C2pw (I) is the space of
piecewise twice continuously differentiable functions on I. The function h is said to
be admissible on I if there is a positive constant C such that

|h3 (t)| , |h33 (t)| , |th33 (t)| ≤ C, t ∈ I. (108)

Moreover, given u ∈W 1,2 (Ω), we say that h is admissible for u if h is admissible on
some interval I containing the range of u.

We emphasize that the constant C in (108) is qualitative only, and does not
appear in any estimates for solutions to equations. If h is admissible on I, then in
particular h satisfies

0<h (t) ≤ C (1 + |t|) , (109)

|h (t)h33 (t)|≤C (|h33 (t)|+ |th33 (t)|) ≤ C3,

for t ∈ I. If h is admissible for u, it follows that hu (x) = h (u (x)) lies in W 1,2 (Ω)
since Ω is bounded (see e.g. Lemma 7.5 in [14]).
In the sequel we shall use three different subsets W of the nonnegative elements

in W 1,2
0 (Ω). These are conveniently summarized in Remark 14 below, and we define

the first of these now. We claim that if h is admissible for u and

M [u;h] =
q
w ∈W 1,2

0 (Ω) : w ≥ 0 and h3 (u)w ∈W 1,2
0 (Ω)

r
, (110)

then
Lhu = h3 (u)Lu+ h33 (u) n∇un2 (111)

holds in theM [u;h]-weak sense. According to Definition 41, this means that

−
]
[∇w]3 B∇hu = −] [∇ (wh3 (u))]3B∇u+

]
wh33 (u) n∇un2 , (112)

and where the integrals on the right are absolutely convergent, for all w ∈M [u;h].
First note that all three integrals in (112) are absolutely convergent since∇u ∈ L2 (Ω)
and w,wh3 (u) ∈W 1,2

0 (Ω), which implies wh33 (u)∇u ∈ L2 (Ω): the product rule (see
e.g. (7.18) in [14]) yields

wh33 (u)∇u = ∇ (wh3 (u))− (∇w)h3 (u) ∈ L2 (Ω) . (113)
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The integral equality (112) follows from the product rule and chain rule upon noting
the absolute convergence of the integrals involved:]

[∇ (wh3 (u))]3B∇u=
]
h3 (u) [∇w]3B∇u+

]
w [∇ (h3 (u))]3B∇u

=

]
[∇w]3B∇h (u) +

]
wh33 (u) [∇u]3B∇u

=

]
[∇w]3B∇hu+ ] wh33 (u) n∇un2 .

We will also need the two equalities (recall that juxtaposition of vectors implies
the dot product)

h3 (u)T3g=T3 (h3 (u)g) + h33 (u) (Tu)g (114)

h3 (u)S3Gu= S3 (h3 (u)Gu) + h33 (u) (Su)Gu

in the usual weak sense for G,g ∈ Ln (Ω): if we write U = T and h = g for the
first equality, and U = S and h = Gu for the second, then the weak sense has the
meaning ]

w (h3 (u)U3h) =
]
Uwh3 (u) · h

=

]
h3 (u)Uw · h+

]
wh33 (u)Uu · h

=

]
wU3 (h3 (u)h) +

]
wh33 (u) (Uu) · h,

for all nonnegative w ∈W 1,2
0 (Ω). Note that the two integrals on the right-hand side

of the middle line are absolutely convergent in both cases. Indeed, in the case n ≥ 3,
if U = T and h = g, then w ∈ W 1,2

0 (Ω) ⊂ L2(
n
2 )
3

0 (Ω) and g ∈ L2(n2 ) (Ω) implies
wg ∈ L2 (Ω). Thus the second integral

U
wh33 (u)Tu · g is absolutely convergent

since h33 (u) is bounded and Tu ∈ L2 (Ω). If U = S and h = Gu, then wG ∈ L2 (Ω)
as above, and the second integral

U
wh33 (u)Su ·Gu is absolutely convergent since

uh33 (u) is bounded and Su ∈ L2 (Ω). The first integral is also absolutely convergent
in both cases. Similar comments apply when n = 2 using that G,g ∈ Lq for some
q > 2.
We are now ready to compute the equation satisfied by a nonlinear function of

a weak solution to (99). Let u ∈ W 1,2 (Ω), h be admissible for u and set hu = h (u).
Then from (111), we have in theM [u;h]-weak sense,

Lhu+HRhu = h3 (u) (Lu+HRu) + h33 (u) n∇un2 . (115)

Now assume in addition that u is a weak solution of (99) or (101) in Ω. Combining
the above equalities (111), (114) and (115), we obtain that

Lhu+HRhu (116)

= h3 (u) (f +T3g − S3Gu− Fu) + h33 (u) n∇un2

= h3 (u) f +T3 (h3 (u)g) + h33 (u) (Tu)g+ h33 (u) n∇un2

−S3 (h3 (u)uG)− h33 (u) (Su)Gu− uh3 (u)F

in the M [u;h]-weak sense with M [u;h] as in (110). Indeed, the integral form of
(116) follows using first (102) with w replaced by wh3 (u) ∈ W 1,2

0 (Ω) if h3 ≥ 0,
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otherwise use −wh3 (u), and then (112) to obtain

−
]
wh3 (u) f −

]
T (wh3 (u))g+

]
wh3 (u)HRu+

]
S (wh3 (u))Gu+

]
wh3 (u)Fu

=

]
[∇ (wh3 (u))]3B∇u

=

]
[∇w]3 B∇hu+ ] wh33 (u) n∇un2 ,

and finally applying (114) (which justifies the product rule) to the second and fourth
integrals on the left. Thus if we define the operatorhL ≡ L+HR+ S3 hG+ hF
where hF = h3 (u)u

h (u)
F, hG =

h3 (u)u
h (u)

G,

and let hf = h3 (u) f, hg = h3 (u)g,
then in the sense of Definition 40, hu = h (u) is aM [u;h]-weak solution of the equationhLhu = hf +T3hg+ h33 (u) n∇un2 +Φ (117)

in Ω, where
Φ = h33 (u) {(Tu)g − (Su)Gu} ,

andM [u;h] is as in (110). We remind the reader that for w ∈M [u;h] the integralU
wΦ =

U
wh33 (u) {(Tu)g − (Su)Gu} is absolutely convergent since

|wh33 (u) (Tu)| , |wh33 (u) (Su)| ≤
√
N |wh33 (u)| n∇un ≤ C |wh33 (u)∇u|

which is in L2 (Ω) by (113), and since g and Gu are in L2 (Ω) by (104) and (105).

Remark 13 Suppose that u ∈ W 1,2 (Ω) and h is admissible for u. If u is a weak�
subsolution
supersolution

�
of (101) in Ω and h3 (u)

�
≥
≤

�
0, then the term h3 (u) (Lu+HRu)

in (115) satisfies

h3 (u) (Lu+HRu) ≥ h3 (u) (f +T3g − S3Gu− Fu)

in the M [u;h]-weak sense, and so hu is a M [u;h]-weak subsolution of (117) in Ω,

where M [u;h] is as in (110). Similarly, if u is a weak
�
subsolution
supersolution

�
of (101)

in Ω and h3 (u)
�
≤
≥

�
0, then hu is aM [u;h]-weak supersolution of (117) in Ω. Note

that the case of a weak solution of (101) is included here since h3 has only one sign.

In the above, we have shown in particular that if u is a weak
�
subsolution
supersolution

�
of (101), h is admissible for u and h3 (u) ≥ 0, then hu = h (u) is a M [u;h]-weak�
subsolution
supersolution

�
of (117). The subset M [u;h] is maximal for this purpose as is

evident from the first equality in (116), where it is required that w ∈M [u;h] satisfy]
{wh3 (u) (Lu+HRu)} =

]
{wh3 (u) (f +T3g − S3Gu− Fu)} .
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However, in applying Moser iteration to hu, we will see below that we do not need
the full force of the conclusion that hu is aM [u;h]-weak

�
subsolution
supersolution

�
of (117),

but only that hu is a E [hu]-weak � subsolution
supersolution

�
of (117) where the subset E [u] of

”energy test functions” associated to a nonnegative u is given by

E [u] =
q
ψ2u : ψ ∈ C0,10 (Ω)

r
. (118)

To see that E [hu] is a subset ofM [u;h], we must show ψ2hu ∈M [u;h] for ψ ∈ C0,10 (Ω)
and hu = h (u), i.e.
ψ2h (u) ,ψ2h (u)h3 (u) ∈W 1,2

0 (Ω) , if h is admissible for u and ψ ∈ C0,10 (Ω) .
(119)

We’ve already observed after (109) that ψ2h (u) ∈W 1,2
0 (Ω), and thus we have

ψ2h (u)h3 (u) ∈ L2 (Ω)

since h3 (u) is bounded. Moreover,��∇ �ψ2h (u)h3 (u)��� ≤ |2ψh (u)h3 (u)∇ψ|+���ψ2h3 (u)2∇u���+��ψ2h (u)h33 (u)∇u�� ∈ L2 (Ω)
by (108) and (109). This completes the demonstration that E [hu] ⊂M [u;h] if h is
admissible for u and hu = h (u).
3.1.1 Energy sub and super solutions

Now let u ∈ W 1,2 (Ω) and hu = h (u), where h is admissible for u, and suppose thathu is a positive E [hu]-weak � subsolution
supersolution

�
of (117) in Ω, which we sometimes refer

to loosely by saying that hu is an energy (sub or super) solution of (117) in Ω. Let
ψ ∈ C0,10 (Ω). Then from the integral form of (117) we obtain] 

∇h (u) ,∇ψ2h (u)
�
+

]
ψ2h (u)h33 (u) n∇un2 (120)�

≤
≥

�
−
] hfψ2h (u)− N[

i=1

] hgiTi �ψ2h (u)�+ N[
i=1

]
(HiRih (u))ψ

2h (u)

−
N[
i=1

]
h (u) hGiSi �ψ2h (u)�+ ] hFh (u)ψ2h (u)

−
]

ψ2h (u)h33 (u) {(Tu)g − (Su)Gu} .

The left side of (120) equals]
ψ2h3 (u)2 k∇u,∇ul+ 2

]
ψh (u)h3 (u) k∇u,∇ψl (121)

+

]
ψ2h (u)h33 (u) n∇un2

=

]
ψ2Γ (u) n∇un2 + 2

]
kψ∇h (u) , h (u)∇ψl

where

Γ (t) = h3 (t)2 + h (t)h33 (t) =
�
1

2
h (t)2

�33
.
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The first term T =
U
ψ2Γ (u) n∇un2 on the right-hand side of (121) will turn out to

be the main term in (120) in our specific calculations below. Indeed, for the functions
h (t) that we consider, either Γ (t) > 0 everywhere (i.e. h (t)2 is strictly convex),
or Γ (t) < 0 everywhere (i.e. h (t)2 is strictly concave), and in either case, all of the
remaining terms in (120) and (121) have absolute value dominated by the sum of a
small multiple of |T |, a small mutiple of

U
ψ2h3 (u)2 n∇un2, and a large multiple of

integrals involving no derivatives of u. In preparation for proving this, we establish
the following inequalities.
For 0 < ε < 1 (this ε is not related to the ε in the containment condition (11)),

we can estimate the last term on the right side above by

2

����] kψ∇h (u) , h (u)∇ψl����≤ ε

]
kψ∇h (u) ,ψ∇h (u)l+ ε−1

]
kh (u)∇ψ, h (u)∇ψl

= ε

]
ψ2h3 (u)2 n∇un2 + ε−1

]
h (u)2 n∇ψn2 .

The three terms involving a sum
SN
i=1 on the right side of (120) can be estimated

by dominating����] hgiTi �ψ2h (u)����� = ����2] ψh (u)h3 (u) gi (Tiψ) +
]

ψ2h3 (u)2 gi (Tiu)
����

by ]
h (u)2 (Tiψ)

2 +

]
ψ2h3 (u)2 g2i

+ε

]
ψ2h3 (u)2 (Tiu)

2
+ ε−1

]
ψ2h3 (u)2 g2i

≤
]
h (u)2 n∇ψn2 +

]
ψ2h3 (u)2 g2i

+ε

]
ψ2h3 (u)2 n∇un2 + ε−1

]
ψ2h3 (u)2 g2i ,

since (Tiu)
2 ≤ n∇un2 and (Tiψ)2 ≤ n∇ψn2 follow from the hypothesis that Ti is

subunit; similarly, ����] h (u) hGiSi �ψ2h (u)�����
≤
]
h (u)

2 n∇ψn2 +
]

ψ2h3 (u)2 u2G2i

+ε

]
ψ2h3 (u)2 n∇un2 + ε−1

]
ψ2h3 (u)2 u2G2i ,

since Si is subunit; and finally����] (HiRih (u))ψ
2h (u)

���� ≤ ε

]
ψ2h3 (u)2 n∇un2 + ε−1

]
ψ2h (u)2H2

i ,

since Ri is subunit.
We now consider the final term on the right-hand side of (120). Here we use

|hh33| ≤ |Γ|+ |h3|2 to obtain����] ψ2h (u)h33 (u) {(Tu)g − (Su)Gu}
����≤ ε

]
ψ2 |h (u)h33 (u)|

q
|Tu|2 + |Su|2

r
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+ε−1
]

ψ2 |h (u)h33 (u)|
q
|g|2 + |G|2 u2

r
≤ 2Nε

]
ψ2
�
|Γ (u)|+ |h3 (u)|2

�
n∇un2

+ε−1
]

ψ2 |h (u)h33 (u)|
q
|g|2 + |G|2 u2

r
.

Now let u ∈W 1,2 (Ω) and hu = h (u) where h is admissible for u, and assume thathu satisfies at least one of the following:
i. Γ (t) > 0 on I and hu is a E [hu]-weak subsolution of (117) in Ω,
ii. Γ (t) < 0 on I and hu is a E [hu]-weak supersolution of (117) in Ω.

Then for 0 < ε < 1, we obtain by combining the above estimates that]
ψ2
k
(1− 2Nε) |Γ (u)|− (5N + 1) εh3 (u)2

l
n∇un2 (122)

≤
�
2N + ε−1

� ]
h (u)

2 n∇ψn2 + ε−1
]

ψ2h (u)
2
H2

+

]
ψ2h (u) |h3 (u)| |f |+

]
ψ2h (u) |h3 (u)| |uF |

+

]
ψ2
q�
1 + ε−1

�
h3 (u)2 + ε−1 |h (u)h33 (u)|

r�
|g|2 + |G|2 u2

�
.

3.1.2 Energy solutions with h a power function

Although there will be technical difficulties to be overcome, we wish to apply inequal-
ity (122) with h = hβ for β ∈ R \

�
0, 12

�
, where hβ (t) = tβ, t > 0, to a positive weak

solution u of (99) or (101), and in addition, to certain positive weak subsolutions and
supersolutions. Noting the important property that

Γ (t) =
2β − 1

β
h3β (t)

2

�
> 0 for β < 0,β > 1

2
< 0 for 0 < β < 1

2

,

we want to apply (122) with h = hβ when u is a positive weak
�
subsolution
supersolution

�
of (101) and

�
β > 1

2
β < 1

2

�
. Moreover, in the proof of our local boundedness result,

Proposition 44 below, we will need to exploit the more general fact that if h3 (u) ≥ 0,
then hu is a E [hu]-weak subsolution of (117) for a A [u]-weak subsolution u of (101) in
Ω, where the subset A [u] of ”admissible test functions” associated to u is given by

A [u] =
q
ψ2h (u)h3 (u) : ψ ∈ C0,10 (Ω) , h is admissible for u and h3 ≥ 0

r
. (123)

The notion of A [u]-weak subsolution is more general than weak subsolution since
A [u] ⊂W 1,2

0 (Ω) by (119). We need the following lemma.

Lemma 43 Suppose u is a A [u]-weak subsolution of (101) in Ω, h is admissible for
u and h3 (u) ≥ 0. Then hu = h (u) is a positive E [hu]-weak subsolution of (117) in Ω.
Proof. (of Lemma 43) Just as in Remark 13, we see by examining the first equality
in (116) that hu = h (u) is a E [hu]-weak subsolution of (117) in Ω provided]

{wh3 (u) (Lu+HRu)} ≥
]
{wh3 (u) (f +T3g − S3Gu− Fu)}
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for all w ∈ E [hu], i.e. w = ψ2h (u) for ψ ∈ C0,10 (Ω). This inequality however, follows
from the assumption that u is a A [u]-weak subsolution of (101) in Ω. This completes
the proof of Lemma 43.

Remark 14 In order to describe appropriate notions of W-weak solution and W-
weak sense of equations, we have introduced in (110), (118) and (123) three subsetsW
of the nonnegative elements ofW 1,2

0 (Ω) that are associated to a function u ∈W 1,2 (Ω)
(and in the first case to an admissible h as well):

M [u;h] =
q
w ∈W 1,2

0 (Ω) : w ≥ 0 and h3 (u)w ∈W 1,2
0 (Ω)

r
,

E [u] =
q
ψ2u : ψ ∈ C0,10 (Ω)

r
,

A [u] =
q
ψ2h (u)h3 (u) : ψ ∈ C0,10 (Ω) , h is admissible for u and h3 ≥ 0

r
.

We summarize here the basic properties of these subsets and their relation to standard
Moser iteration. If u is a weak solution to (101), thenM [u;h] is the maximal subset
W such that hu = h (u) is aW-weak solution to (117). The set of energy test functions
E [hu] is the minimal subsetW such that the Caccioppoli inequality (122) holds for W-
weak solutions hu = h (u) to (117) when u ∈W 1,2 (Ω) and h is admissible for u. The
set of admissible test functions A [u] is the minimal subset W such that W-weak
solutions u to (101) enjoy the property that hu = h (u) is a E [hu]-weak solution to
(117) for all h that are admissible for u. In standard versions of Moser iteration,
one uses test functions w = ψ2h (u)h3 (u) from the class A [u] directly in equation
(101), with special choices of h. For example, h (t) = tβ yields w = βψ2u2β−1 and

h (t) =
t
2 log t+mm yields w = ψ2 (u+m)

−1.

However, as mentioned above, there are difficulties to be overcome in applying
inequality (122) with h = hβ. The difficulties are related to the fact that hβ is not
in general admissible for positive u in W 1,2. We now assume in addition that u (x)
is bounded below by a positive constant m. Then for β ≤ 1, h3β is bounded and
Lipschitz on [m,∞), the range of u. In order to deal with the fact that h3β fails to
be bounded and Lipschitz on [m,∞) when β > 1, we use the technique of truncating
derivatives of the power function tβ (e.g. as in Theorem 8.15 of [14]). For β > 1 and
M > 0, let

hβ,M (t) =

�
tβ, 0 < t ≤M
Mβ + βMβ−1 (t−M) , t > M ,

and for convenience in notation, let hβ,M (t) = hβ (t) for β ≤ 1 and M > 0. Then
the functions hβ,M are admissible on the intervals [m,∞) for all β ∈ R, M > 0 and
m > 0.
Motivated by the above concerns, we record that for u ∈ W 1,2 (Ω) and hu =

hβ,M (u),

(a) When β > 1
2 and u is a positive A [u]-weak subsolution of (101), we have

that Γ > 0 and that hu is a E [hu]-weak subsolution of (117) by Lemma 43,
since h3β,M > 0. Thus assumption i above holds.

(b) When 0 < β < 1
2 and u is a positive weak supersolution of (101), we have

that Γ < 0 and that hu is a E [hu]-weak supersolution of (117) by Remark
13, since h3β,M > 0. Thus assumption ii above holds.

(c) When β < 0 and u is a positive weak supersolution of (101), we have that
Γ > 0 and that hu is a E [hu]-weak subsolution of (117) by Remark 13, since
h3β,M < 0. Thus assumption i above holds.
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We summarize our assumptions on u, bounded below by a positive constant, and
β, not equal to 0 or 1

2 , as follows - one or more of the following three conditions
holds:u is a positive weak solution of (101) in Ωu is a positive A [u] -weak subsolution of (101) in Ω and β > 1

2
u is a positive weak supersolution of (101) in Ω and β < 1

2

. (124)

We could generalize the third assumption in (124) by requiring merely that u be a
positive A− [u]-weak supersolution of (101) in Ω and β < 1

2 , where

A− [u] =
q
ψ2h (u)h3 (u) : ψ ∈ C0,10 (Ω) , h is admissible for u and h3 ≤ 0

r
,

but will refrain from doing so since we will not need it. We also compute that

Γ (u) = h3β,M (u)
2 + hβ,M (u)h

33
β,M (u) = ηβ,M (u)h

3
β,M (u)

2 ,

where

ηβ,M (t) =

� 2β−1
β , 0 ≤ t ≤M or β ≤ 1

1, t > M and β > 1
.

Then by the above discussion, (122) holds with h = hβ,M when u satisfies (124) since
h3 (t), h33 (t) and th33 (t) are all bounded and since the signs of Γ and h3β,M are in
accordance with (a), (b) and (c) above, so that either (i) or (ii) holds. Now let

µβ = min

�����2β − 1β

���� , 1� ,
and choose ε so that (1− 2Nε)µβ − (5N + 1) ε = 1

2µβ. For β 9=
1
2 , we have µβ > 0

and ε =
µβ

10N+2+4Nµβ
> 0, and we compute that the left-hand side of (122) satisfies]

ψ2
k
(1− 2Nε) |Γ (u)|− (5N + 1) εh3 (u)2

l
n∇un2

=

]
ψ2
�
(1− 2Nε)

��ηβ,M (u)��− (5N + 1) ε
�
h3β,M (u)

2 n∇un2

≥
]

ψ2
�
(1− 2Nε)µβ − (5N + 1) ε

�
h3β,M (u)

2 n∇un2

=
1

2
µβ

]
ψ2h3β,M (u)

2 n∇un2 .

Thus (122) yields

1

2
µβ

]
ψ2h3β,M (u)

2 n∇un2 (125)

≤C
�
1 + µ−1β

�]
hβ,M (u)

2
q
n∇ψn2 + ψ2 |H|2

r
+

]
ψ2hβ,M (u)

��h3β,M (u)�� (|f |+ u |F |)
+C

�
1 + µ−1β

�]
ψ2
q
h3β,M (u)

2 +
��hβ,M (u)h33β,M (u)��r �|g|2 + u2 |G|2� .

Now letM →∞ in (125) to obtain that (125) holds with hβ in place of hβ,M . To see

this, we note that for β > 1, each of the functions h2β,M ,
���hβ,Mh3β,M ���, �h3β,M�2 and
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���hβ,M (u)h33β,M (u)��� increases asM increases to∞, and so the monotone convergence
theorem applies.
Altogether then, since

U
ψ2h3β (u)

2 n∇un2 =
U
ψ2
��∇uβ��2, we have]

ψ2
��∇uβ��2 (126)

≤C
�
1 + µ−2β

�]
u2β

q
n∇ψn2 + ψ2 |H|2

r
+2µ−1β |β|

]
ψ2u2β−1 (|f |+ u |F |)

+C
�
β2 + |β|

� �
1 + µ−2β

�]
ψ2u2β−2

�
|g|2 + u2 |G|2

�
,

whenever ψ ∈ C0,10 (Ω), β ∈ R with β 9= 0, 12 , and u is bounded below by a positive
constant and satisfies (124). Note that we are not assuming that the right side of
(126) is finite at this point.

3.1.3 Inhomogeneous equations

In order to handle the terms involving f and g on the right side of (126), as well as
allowing u to be merely nonnegative, we will want to apply inequality (126) (with

appropriate restrictions on β) to a positive

 weak solution
A [u] -weak subsolution
weak supersolution

 u = u+m (r)

of the equation
Lu = f +m (r)F +T3g+ S3m (r)G (127)

in Ω, where L = L+HR+ S3G+ F and

m (r) = mq,η (r) = r
2η nfn q

2
+ rη ngnq , (128)

and η > 0 satisfies q (1− η) > Q. The result of this application will be the following
variant of (126):]

ψ2
��∇uβ��2 (129)

≤C
�
1 + µ−2β

�]
u2β

q
n∇ψn2 + ψ2 |H|2

r
+2µ−1β |β|

]
ψ2u2β−1 (|f +m (r)F |+ u |F |)

+C
�
β2 + |β|

� �
1 + µ−2β

�]
ψ2u2β−2

�
|g|2 + |m (r)G|2 + u2 |G|2

�
.

In the case m (r) = 0, we use m > 0 and then let m→ 0 at the end of the argument,
thus ensuring that at all times, u is bounded below by a positive constant. Now if u
satisfies u is a nonnegative weak solution of (101) in Ωu is a nonnegative weak subsolution of (101) in Ω and β > 1

2
u is a nonnegative weak supersolution of (101) in Ω and β < 1

2

,

then it is easy to see thatu is a positive weak solution of (127) in Ωu is a positive weak subsolution of (127) in Ω and β > 1
2

u is a positive weak supersolution of (127) in Ω and β < 1
2

.
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However, if umerely satisfies (124), then a problem arises with the middle assumption
there, namely that if u is a positive A [u]-weak subsolution of (101) in Ω, it does not
necessarily follow that u is a positive A [u]-weak subsolution of (127) in Ω. The
difficulty is that the collection of test functions changes from A [u] to A [u]. Thus for
m > 0, we consider the equation

L (u+m) = f +mF +T3g+ S3mG, (130)

and will now assume that u satisfies one of the following four assumptions with
β 9= 0, 12 :
u is a nonnegative weak solution of (101) in Ω
u is a nonnegative weak subsolution of (101) in Ω and β > 1

2
u+m is a positive A [u+m] -weak subsolution of (130) in Ω for all m > 0, and β > 1

2
u is a nonnegative weak supersolution of (101) in Ω and β < 1

2

.

(131)
We note that the second assumption in (131) implies the third since if u is a nonneg-
ative weak subsolution of (101), then u+m is a positive weak subsolution of (130),
and then u+m is a positive A [u+m]-weak subsolution of (130) since A [u+m] ⊂
W 1,2
0 (Ω) by (119). We are including the second assumption in (131) explicitly so as

to emphasize the third, which is used only in the proof of Proposition 44. Note that
if the third condition in (131) holds, then the choice m = m (r) shows that u is a
A [u]-weak subsolution of (127), and hence that (129) holds as desired.
Using u−1 ≤ m (r)−1, we obtain from (129) that for β 9= 0, 12 ,]

ψ2
��∇uβ��2

≤C
�
1 + µ−2β

�]
u2β

q
n∇ψn2 + ψ2 |H|2

r
+2µ−1β |β|

]
ψ2u2β

q
m (r)−1 |f +m (r)F |+ |F |

r
+C

�
β2 + |β|

� �
1 + µ−2β

�]
ψ2u2β

����m (r)−1 g���2 + |G|2� ,
where for the last line we have used

u−2
�
|g|2 +m (r)2 |G|2 + u2 |G|2

�
≤
���m (r)−1 g���2 + 2 |G|2 .

Using Hölder’s inequality with exponents q
2 and

�
q
2

�3
, we thus have]

ψ2
��∇uβ��2 (132)

≤Cβ
]
u2β n∇ψn2 + Cβ nHn2q

�] �
ψ2u2β

�( q2 )3� 1

( q2 )
3

+Cβ

�
m (r)−1 nfn q

2
+
�
m (r)−1 ngnq

�2��] �
ψ2u2β

�( q2 )3� 1

( q2 )
3

+Cβ

q
nFn q

2
+ nGn2q

r�] �
ψ2u2β

�( q2 )3� 1

( q2 )
3

≤Cβ
]
u2β n∇ψn2 + Cβ

�
1 + r−2η

��] �
ψ2u2β

�( q2 )3� 1

( q2 )
3
,

62



where the constant Cβ is dominated by CΥ (β) for the following positive function Υ
of β that blows up at 0, 12 and ∞,

Υ (β) =

#
|β|+ 1

|β| +
1��β − 1
2

��
$τ

, (133)

and where C depends on q, nFn q
2
, nGnq and nHnq, but is independent of u, r, β,

nfn q
2
and ngnq, and where τ is positive and independent of u, r, β, F , G, H, f , g

and q, but may vary from line to line. Note again that we are not assuming the right
side of (132) to be finite.

3.2 Weak reverse Hölder inequalities and Moser iteration
We now invoke the homogeneous space structure given by the quasimetric d in the
hypotheses of Theorem 6. Let u be a nonnegative weak solution of (101), or more
generally satisfy (131), so that u is positive (see the discussion surrounding (128)).
To implement Moser iteration, we fix a d-ball B = B (y, r) with y ∈ Ω, 0 < r <
δ dist (y, ∂Ω), and consider the sequence of Lipschitz functions ψj given in (20),
along with the sets Ej = supp ψj . Note that since B (y, cr) ⊂ Ej ⊂ B (y, r), we
have |Ej | ≈ |B| by doubling. Fix β 9= 0, 12 . If we substitute ψj for ψ in (132), divide
through by |Ej |, and then take square roots, we obtain�

1

|Ej |

]
ψ2j
��∇uβ��2� 1

2

(134)

≤CΥ (β)
�
1

|Ej |

]
u2β

��∇ψj��2� 1
2

+CΥ (β)
�
1 + r−η

�
|Ej |

1

2( q2 )
3− 1

2

�
1

|Ej |

] �
ψ2ju

2β
�( q2 )3� 1

2( q2 )
3

≤CΥ (β) j
N

r

+
1

|Ej |

]
Ej

u2βµ

, 1
2µ

+ CΥ (β)
1

r

�
1

|Ej |

] �
ψ2ju

2β
�ν� 1

2ν

,

with
µ =

�p
2

�3
, ν =

�q
2

�3
. (135)

Indeed, for q > q (1− η) > Q, (10) implies both |Ej | ≥ |B (y, cr)| ≥ cq(1−η) (cr)q(1−η)
and |Ej | ≥ cq (cr)q, and so

�
1 + r−η

�
|Ej |

1

2( q2 )
3− 1

2

=
�
1 + r−η

�
|Ej |−

1
q ≤ c−1c−

1
q

q r−1 + cη−1c
− 1
q

q(1−η)r
−1.

Moreover,

1

|Ej |

]
u2β

��∇ψj��2 ≤� 1

|Ej |

] ��∇ψj��p dx� 2
p

+
1

|Ej |

]
Ej

u2β(
p
2 )
3
, 1

( p2 )
3

(136)

≤CsymC2p
����jNr

����2
+

1

|Ej |

]
Ej

u2βµ

, 1
µ

,

upon using Hölder’s inequality with exponents p2 and
�
p
2

�3
, followed by an application

of (20) and (27).
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We now use the Sobolev inequality (15) to obtain that for some σ > 1 and any
w ∈W 1,2 (B),�
1

|B|

]
B

��ψjw��2σ� 1
2σ

≤ 1
√
csym

Cr

�
1

|B|

]
B

��∇ �ψjw���2� 1
2

+ C

�
1

|B|

]
B

��ψjw��2� 1
2

(137)

≤Cr
�
1

|B|

]
B

ψ2j n∇wn
2

� 1
2

+ C

�
1

|B|

]
B

�
ψ2j + r

2
��∇ψj��2� |w|2� 1

2

,

for j ≥ 1. For β ≤ 1, uβ ∈ W 1,2 (B) (recall that u is bounded below by a positive
constant) and thus (137) holds with w = uβ. For β > 1, we have (137) for w =
hβ,M (u), and the monotone convergence theorem then yields (137) for w = uβ upon
letting M → ∞. Using |Ej | ≈ |B| and combining (134) and (137) with w = uβ we
obtain �

1

|B|

]
B

�
ψju

β
�2σ� 1

2σ

≤Cr
�
1

|B|

]
B

ψ2j
��∇uβ��2� 1

2

+C

�
1

|B|

]
B

�
ψ2j + r

2
��∇ψj��2� ��uβ��2� 1

2

≤CΥ (β) jN
+

1

|Ej |

]
Ej

u2βµ

, 1
2µ

+ C (Υ (β) + 1)

�
1

|Ej |

] �
ψju

β
�2ν� 1

2ν

+Cr

+
1

|Ej |

]
Ej

��∇ψj��2 u2β
, 1

2

,

and hence using (136) again on the final term,

�
1

|Ej+1|

] �
ψju

β
�2σ� 1

2σ

≤CΥ (β) jN
+

1

|Ej |

]
Ej

u2βµ

, 1
2µ

(138)

+C (Υ (β) + 1)

�
1

|Ej |

] �
ψju

β
�2ν� 1

2ν

for j ≥ 1, where the constant C depends on csym, Csym, p, q, nFn q
2
, nGnq and nHnq,

but is independent of u, r, β, nfn q
2
and ngnq. Recall now that max {µ, ν} < σ by

hypothesis, and thus in particular, with

max {µ, ν} ≤ ρ < σ, (139)

we have �
1

|Ej+1|

] �
ψju

β
�2σ� 1

2σ

≤ CΥ (β) jN
+

1

|Ej |

]
Ej

u2βρ

, 1
2ρ

. (140)

In the case ν ≤ µ, the second term on the right of (138) is majorized by the
first term on the right by Hölder’s inequality. We now interrupt the main line of our
development of Moser iteration to point out how to majorize the second term by the
first when µ < ν and Hölder’s inequality is unavailable. This will only be needed
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in the case β > 1
2 and we will appeal to the Lebesgue space interpolation inequality

(see e.g. (7.10) of Chapter 7 of [14])

nwnLs(dλ) ≤ ε nwnLt(dλ) +
�
1

ε

�( 1r− 1
s )

( 1s− 1
t ) nwnLr(dλ) , r < s < t, ε > 0, (141)

valid for any positive measure dλ, in order to estimate the final integral in (138). We
have ν < σ by hypothesis and we now assume µ < ν and β > 1

2 . Let r = 2µ, s = 2ν,
t = 2σ and w = ψju

β in (141). Then (141) with dλ = 1
|Ej |χEj (x) dx and (138) yield

�
1

|Ej |

] �
ψju

β
�2ν� 1

2ν

≤ ε

�
1

|Ej |

] �
ψju

β
�2σ� 1

2σ

+

�
1

ε

�( 1µ− 1
ν )

( 1ν− 1
σ )
�
1

|Ej |

] �
ψju

β
�2µ� 1

2µ

≤ εCΥ (β) jN

+
1

|Ej |

]
Ej

u2βµ

, 1
2µ

+ εC (Υ (β) + 1)

�
1

|Ej |

] �
ψju

β
�2ν� 1

2ν

+

�
1

ε

� ( 1µ− 1
ν )

( 1ν− 1
σ )
+

1

|Ej |

]
Ej

u2βµ

, 1
2µ

.

Now choose ε so that εC (Υ (β) + 1) = 1
2 . Provided the integral

U �
ψju

β
�2ν

is finite,
we can absorb the second term on the right into the left-hand side and obtain

�
1

|Ej |

] �
ψju

β
�2ν� 1

2ν

≤ C
�
p, q,σ,β, jN

�+ 1

|Ej |

]
Ej

u2βµ

, 1
2µ

, (142)

(where C
�
p, q,σ,β, jN

�
depends also on nFn q

2
, nGnq and nHnq). To prove (142), we

have assumed β > 1
2 ,
U
Ej
u2βυ is finite, u satisfies (131) and that B (y, cr) ⊂ Ej ⊂

B (y, r) as above.
Now we return to the main line of our development of Moser iteration. For the

moment, fix ρ satisfying (139) and let θ = σ
ρ so that θ > 1. Fix γ 9= 0 and real and

let uj = uγθ
j−1
. Using uj+1 = uθj , ψj = 1 on Ej+1 and applying (140) with u

βρ = uj ,

i.e. β = γθj−1
ρ = γσj−1

ρj , yields

+
1

|Ej+1|

]
Ej+1

|uj+1|2
, 1

2

≤ CΥ
#
γθj−1

ρ

$
jNσ

+
1

|Ej |

]
Ej

|uj |2
, θ

2

. (143)

Since (140) requires (131), we assume for the above that one of the following holds:
u is a nonnegative weak solution of (101) in Ω and γ 9= 0, ρ

2θj−1
u+m is a positive A [u+m] -weak subsolution of (130) in Ω for all m > 0, and γ > ρ

2θj−1
u is a nonnegative weak supersolution of (101) in Ω and γ < ρ

2θj−1 ,γ 9= 0
.

(144)
Recall from the discussion following (131) that the second assumption there implies
the third. Set

Nj =

+
1

|Ej |

]
Ej

|u|2γθ
j−1
, 1

2θj−1

=

+
1

|Ej |

]
Ej

|uj |2
, 1

2θj−1

,
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for j ≥ 1, so that if we raise (143) to the power 1
θj
, we obtain

Nj+1 ≤
%
CΥ

#
γθj−1

ρ

$
jNσ

& 1
θj

Nj provided (144) holds. (145)

In order to iterate (145) for j ≥ 1, we must have that (144) holds for all j ≥ 1
for some choice of ρ satisfying (139). It turns out that with an appropriate choice of
ρ it is enough to assume that one of the following holds:u is a nonnegative weak solution of (101) in Ω and γ 9= 0
u+m is a positive A [u+m] -weak subsolution of (130) in Ω for all m > 0, and γ > 1

2 max {µ, ν}
u is a nonnegative weak supersolution of (101) in Ω and γ < 0

.

(146)
Indeed, we claim that if (146) holds, then with c as in (20),

ess sup
x∈B(y,cr)

|u (x)|γ ≤ lim sup
j→∞

Nj ≤ Cσ,γ,τ

+
1

|B (y, r)|

]
B(y,r)

|u|2γ
, 1

2

, (147)

where the constant Cσ,γ,τ depends as well on p, q, nFn q
2
, nGnq and nHnq, but is

independent of u, B (y, r), nfn q
2
and ngnq (τ is as in (133)). The first inequality in

(147) is standard and for the second, (145) yields

lim sup
j→∞

Nj ≤


∞\
j=1

%
CΥ

#
γθj−1

ρ

$
jNσ

& 1

θj

N1

≤Cσ,ρ,γ,τ

+
1

|B (y, r)|

]
B(y,r)

|u|2γ
, 1

2

,

with

Cσ,ρ,γ,τ = exp
∞[
j=1

ln

�
C

����γσj−1ρj

���+ ���γσj−1ρj

���−1 + ���γσj−1ρj − 1
2

���−1�τ jNσ

�
�
σ
ρ

�j <∞.

To ensure that Cσ,ρ,γ,τ is finite, we must avoid having
γσj−1
ρj = 1

2 for any j = 1, 2, 3, ...,
as well as γ 9= 0. In fact, given γ 9= 0 and σ > 1, we now choose ρ in (139) so that the
distance of the number 1

2 from the geometric sequence
q
γσj−1
ρj

r∞
j=1

(which depends

continuously on ρ) is close to a maximum, thus obtaining

lim sup
j→∞

Nj ≤ Cσ,γ,τ

+
1

|B (y, r)|

]
B(y,r)

|u|2γ
, 1

2

.

This completes the proof that (147) holds whenever (146) holds.

Remark 15 The restriction γ > 1
2 max {µ, ν} in (146) when u + m is a positive

A [u+m]-weak subsolution for all m > 0 will prove problematic in Proposition 44,
our local boundedness result, since we will need to choose γ = 1 in order to obtain
finiteness of the right-hand side. When q ≤ 4 in (24) and (23) (which can only
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occur in dimensions 2 and 3 since q ≥ Q ≥ n), then max {µ, ν} ≥ ν =
�
q
2

�3 ≥ 2
and it is not true that γ > 1

2 max {µ, ν} in case γ = 1. It is here that we will use
(142) (a consequence of the interpolation inequality) for j = 1 in concert with the
Sobolev inequality (15) to obtain the case γ = 1 of (147). See the end of the proof
of Proposition 44 for this argument. The corresponding problem arises when p ≤ 4
in (20), but cannot be handled by the interpolation inequality. This accounts for the
hypothesis p > 4 in Proposition 44 below.

We can now obtain the local boundedness properties of weak sub and super-
solutions to (101) under natural hypotheses. Note that there exist weak subsolu-
tions of Laplace’s equation in the unit disk that fail to be bounded below, such

as u (x, y) = − log
�
− log

s
x2 + y2

�
. For any function u, we use the notations

u+ = max {u, 0} and u− = max {−u, 0}.

Proposition 44 Suppose that u is a weak solution to (99) in Ω, and that both (23)
and (24) hold, as well as (15), (17) and (20) with p > 4. Then u is locally bounded
in Ω, i.e. for every compact set K ⊂ Ω,

nunL∞(K) ≤ C3K
�
1 + nunL2(Ω)

�
.

More precisely, there is a positive constant c1 depending on the constant in (20), such
that if y ∈ Ω, 0 < r < δ dist (y, ∂Ω) for sufficiently small δ, then

nunL∞(B(y,c1r)) ≤ C


#

1

|B (y, r)|

]
B(y,r)

u2

$ 1
2

+ r2η nfn q
2
+ rη ngnq

 , (148)

with a constant C that is independent of nfn q
2
and ngnq. Of course C depends

upon the constants in (20) and (15). More generally, if u is a weak subsolution
(supersolution) to (99) in Ω under the above conditions, then u is locally bounded
above (below) and (148) holds with u replaced on both sides by u+ (u−).

Proof. Suppose first that u is a weak subsolution to (99), which is the same as (101),
in Ω. Let m (r) = r2η nfn q

2
+ rη ngnq as in (128) (if m (r) = 0, replace m (r) with

m > 0 and let m→ 0 at the end of the argument), and set h (t) =
t
m (r)

2
+ t2 for

t ≥ 0 and h (t) = m (r) for t < 0. Then h is admissible on R (we remind the reader
that the constant C in (108) is only qualitative, and doesn’t appear in any estimates
for u) and h3 ≥ 0, so that by Remark 13, hu = h (u) is a positive M [u;h]-weak
subsolution of (117) in Ω, whereM [u;h] is as in (110), i.e.

M [u;h] =
q
w ∈W 1,2

0 (Ω) : w ≥ 0 and h3 (u)w ∈W 1,2
0 (Ω)

r
.

Since the vector fields T and S are subunit and h33 ≥ 0, we have the inequality

h33 (u) n∇un2 +Φ
= h33 (u)

q
n∇un2 + (Tu)g − (Su)Gu

r
≥ h33 (u)

�
n∇un2 − ε (Tu)

2 − 1
ε
|g|2 − ε (Su)

2 − 1
ε
|G|2 u2

�
≥−C0h33 (u)

q
|g|2 + |G|2 u2

r
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in the M [u;h]-weak sense. Thus hu (x) = h (u (x)) is a (positive) M [u;h]-weak
subsolution of the equation

Lhu+HRhu+ S3 �hGhu�+ hhFhu = hhf +T3hg, (149)

where

hhF = u

h (u)
h3 (u)F + C0

u2

h (u)
h33 (u) |G|2 ,

hG= u

h (u)
h3 (u)G,

hhf = h3 (u) f − C0h33 (u) |g|2 ,hg= h3 (u)g.
Now we have ���� u

h (u)
h3 (u)

����≤ 1, ���� u2h (u)
h33 (u)

���� ≤ 1, |h3 (u)| ≤ 1,
|h33 (u)|≤m (r)−1 ,

and it follows that ����hhF����
q
2

≤ nFn q
2
+ C0 nGn2q ,��� hG���

q
≤ nGnq ,����hhf����

q
2

≤ nfn q
2
+ C0m (r)

−1 ngn2q ,

nhgnq ≤ ngnq .
We would like to apply inequality (147) to the (positive)M [u;h]-weak subsolutionhu = h (u) of (149), but this requires the middle case of (146), i.e. that hu +m is a

positive A [hu+m]-weak subsolution of
L (hu+m)+HR (hu+m)+S3 �hG (hu+m)�+ hhF (hu+m) = �hhf +mhhF�+T3hg+S3m hG

(150)
in Ω for all m > 0, and γ > 1

2 max {µ, ν}. Since hu +m is already a subsolution of
(150) in theM [u;h]-weak sense, it is enough to establish that A [hu+m] ⊂M [u;h]
for all m > 0, i.e. by (123), that

h3 (u)ψ2h1 (hu+m)h31 (hu+m) ∈W 1,2
0 (Ω)

whenever ψ ∈ C0,10 (Ω), m > 0, h1 is admissible for hu+m where hu = h (u), and h (t)
is as above. Now fix m > 0 and set

h2 (t) = h1 (t+m) ,

h3 (t) = h2 (h (t)) = h2 ◦ h (t) .

Then h33 = (h
3
2 ◦ h)h3 implies that

h3 (u)ψ2h1 (hu+m)h31 (hu+m) = h3 (u)ψ2h2 (hu)h32 (hu) = ψ2h3 (u)h
3
3 (u) ,
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and thus by (119) applied to h3, matters are reduced to proving that h3 is admissible
on R. Clearly h3 ∈ C1 (R) ∩ C2pw (R) is positive and monotone, and h33 = (h32 ◦ h)h3
is bounded. To establish the remaining inequalities in (108) for h3, we compute

h333 = (h
33
2 ◦ h) (h3)

2
+ (h32 ◦ h)h33.

Clearly, h333 is bounded and

th333 (t) = th
33
2 (h (t)) (h

3 (t))2 + th32 (h (t))h
33 (t)

= {h (t)h332 (h (t))}
t (h3 (t))2

h (t)
+ {th33 (t)}h32 (h (t)) .

By (108), both terms in braces are bounded, as is h32 (h (t)). Finally,
t(h3(t))

2

h(t) is
bounded for the special choice of h (t) made above. This completes the proof that
(147), with γ > 1

2 max {µ, ν}, does indeed hold for hu = h (u) when u is a weak
subsolution of (99) in Ω.
We obtain from (147) with γ > 1

2 max {µ, ν} applied to hu and equation (149) that
nu+nL∞(B(y,cr)) ≤

���hu���
L∞(B(y,cr))

≤ C
1
γ
σ,γ,τ

+
1

|B (y, r)|

]
B(y,r)

hu2γ, 1
2γ

, (151)

where hu = hu+ hm (r) and
hm (r) = r2η ����hhf����

q
2

+ rη nhgnq .
We wish to show that (151) holds with γ = 1, possibly with a bigger constant and
an enlarged ball on the right side. In case µ ≥ υ, this is true with no change on the
right side since the requirement that γ > 1

2 max {µ, ν} is satisfied for γ = 1 due to
our hypothesis that p > 4, which implies that max {µ, ν} = µ =

�
p
2

�3
< 2. If on the

other hand ν > µ, we recall the case j = 1 of (142), but with u there replaced by hu
and r there replaced by r

c so that

B (y, r) ⊂ {ψ1 = 1} ⊂ supp ψ1 = E1 ⊂ B
�
y,
r

c

�
and if β > 1

2 ,+
1

|B (y, r)|

]
B(y,r)

hu2βν, 1
2ν

≤C
�
1

|E1|

] �
ψ1huβ�2ν� 1

2ν

(152)

≤CC (p, q,σ,β, 1)
�
1

|E1|

]
E1

hu2βµ� 1
2µ

≤C 3C (p, q,σ,β, 1)
+

1��B �y, rc���
]
B(y, rc )

hu2βµ, 1
2µ

,

provided
U �

ψ1huβ�2ν < ∞, but where now hu = hu + hm � rc�. Choose β = γ
max{µ,ν}

which is a legitimate choice for β since γ
max{µ,ν} >

1
2 . Then 2βν = 2

γ
max{µ,ν}ν = 2γ

since we now have ν > µ. We next claim that
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• βµ ≤ 1,

•
U �

ψ1huβ�2ν <∞.
To obtain these two inequalities, we first observe that p > 4 implies µ =

�
p
2

�3
< 2,

and since max {µ, ν} = ν, we may choose γ such that

ν

2
< γ ≤ ν

µ
.

Note that since q > 2σ3, we have ν < σ and then

γ ≤ ν

µ
<

σ

µ
≤ σ.

Thus βµ = γµ
ν ≤ 1 and�] �

ψ1huβ�2ν� 1
2βν

≤
+]

B(y, rc )
hu2σ, 1

2σ

<∞

by the Sobolev inequality (15) with w = ψhu, where ψ ∈ C0,10 (Ω) and ψ = 1 on
B
�
y, rc

�
. This establishes that (152) holds with 2βν = 2γ and 2βµ ≤ 2, and hence

that+
1

|B (y, r)|

]
B(y,r)

hu2γ, 1
2γ

≤ C3C (p, q,σ,β, 1)
+

1��B �y, rc���
]
B(y, rc )

hu2, 1
2

. (153)

From (153) and the inequality hm � rc� ≤ C hm (r) we obtain that (151) holds with
γ = 1, possibly with a bigger constant and the enlarged ball B

�
y, rc

�
on the right

side. Using the inequality

hu= hu+ r2η ����hhf����
q
2

+ rη nhgnq
≤
t
m (r)2 + u2+ + r

2η nfn q
2
+ Cm (r)−1

�
rη ngnq

�2
+ rη ngnq

≤ |u+|+ (C + 2)m (r) ,

we finally obtain that

nu+nL∞(B(y,cr)) ≤ CC
1
γ
σ,τ

+ 1��B �y, rc���
]
B(y, rc )

|u+|2
, 1

2

+m (r)

 ,
when u is a weak subsolution to (101). If u is a weak supersolution to Lu = f +T3g,
then we consider the subsolution −u to Lu = −f − T3g. This completes the proof
of the local estimate on balls in Proposition 44.

3.3 The strong Harnack inequality
Let u be a nonnegative weak solution to (99). Then the first part of (146) holds if
γ 9= 0, and thus (147) holds if γ 9= 0. For γ > 0, we multiply the following two
inequalities from (147),

ess sup
x∈B(y,cr)

u (x) ≤ C
1
γ
σ,γ,τ

+
1

|B (y, r)|

]
B(y,r)

u2γ

, 1
2γ
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and

ess sup
x∈B(y,cr)

u (x)−1 ≤ C
1
γ

σ,−γ,τ

+
1

|B (y, r)|

]
B(y,r)

u−2γ
, 1

2γ

,

to obtain

ess supx∈B(y,cr) u (x)
ess infx∈B(y,cr) u (x)

(154)

≤C
1
γ
σ,γ,τC

1
γ

σ,−γ,τ

+%
1

|B (y, r)|

]
B(y,r)

(uγ)2
&%

1

|B (y, r)|

]
B(y,r)

�
1

uγ

�2&, 1
2γ

.

Note that the right side of (154) is finite since u is bounded below by construction,
and bounded above by Proposition 44. To obtain the ”standard strong form” (172) of
Harnack’s inequality from (154), it only remains to show that the right side of (154)
is bounded independent of the ball B (y, r) ⊂ Ω for some γ > 0, i.e. that whenever u
is a nonnegative weak solution of (99) in Ω, then the weight u (x)2γ is an A2 weight
for some γ > 0. By an extension of the John-Nirenberg inequality to homogeneous
spaces in Stromberg and Torchinsky [43], which we recall in the short subsubsection
below, this will follow if we can show that v (x) ≡ log u (x) ∈ BMO relative to the
homogeneous space with quasimetric d (x, y), i.e. if

1

|B (y, r)|

]
B(y,r)

#
v − 1

|B (y, r)|

]
B(y,r)

v

$2
≤ C,

for all balls B (y, r) ⊂ Ω. Using the Poincaré inequality (17), it then suffices by (27),
which relates the norms n·nQ and n·n, to show that]

B(y,C0r)

n∇vn2 ≤ C 3r−2 |B (y,C0r)| , (155)

for all balls B (y, C0r) ⊂ Ω. It will then follow that nvnBMO ≤
√
CC3. How-

ever, we must localize these standard results to balls B (y, r) with y ∈ Ω, 0 < r <
δ dist (y, ∂Ω), since we are only able to obtain (155) for such δ-local balls. See the
appendix for a short discussion of an alternate method due to E. Bombieri for proving
Harnack’s inequality.

3.3.1 The John-Nirenberg inequality in a homogeneous space

Our purpose here is to recall the classical distribution inequality of F. John and L.
Nirenberg [23] in the setting of homogeneous spaces, and obtain as a consequence
that exponentials of BMO functions with small norm are A2 weights. Moreover, we
must obtain this in the local sense for δ-local balls B (y, r), i.e. those with y ∈ Ω and
0 < r < δ dist (y, ∂Ω). Suppose Ω is an open subset of Rn and (Ω, d (x, y) , dµ) is a
symmetric general homogeneous space. Specifically, this means that d is a symmetric
quasimetric,

d (x, y) = 0⇐⇒ x = y,

d (x, y) = d (y, x) ,

d (x, y)≤ κ (d (x, z) + d (z, y)) ,

x, y, z ∈ Ω, and the balls B (x, r) = {y ∈ Ω : d (x, y) < r} are µ-measurable and
satisfy a doubling condition relative to the measure dµ,

|B (x, 2r)|µ ≤ Cdoub |B (x, r)|µ .
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For a locally integrable function f on Ω, we say that f ∈ BMO = BMO (Ω, d, µ) if
1

|B|µ

]
B

|f − fB| dµ ≤ C, (156)

for all balls B, where fB = 1
|B|µ

U
B
fdµ is the µ-average of f on B. The infimum

of all constants C satisfying (156) is the BMO ”norm” of f , denoted nfnBMO. We
also consider the δ-local space δ-BMO = δ-BMO (Ω, d, µ) for δ > 0 with the same
definition as above, but with the balls B = B (x, r) restricted to be δ-local, i.e.x ∈ Ω,
0 < r < δ dist (x, ∂Ω). For a locally integrable nonnegative function w on Ω, we say
that w ∈ A2 = A2 (Ω, d, µ) if#

1

|B|µ

]
B

wdµ

$#
1

|B|µ

]
B

w−1dµ

$
≤ C (157)

for all balls B. The infimum of all constants C satisfying (157) is the A2 ”norm” of
w, denoted nwnA2 . Similarly, we consider δ-A2 = δ-A2 (Ω, d, µ) with δ-local balls in
the above definition.

Lemma 45 Given δ > 0, there are positive constants δ0, C1 and c2 such that

|{x ∈ B0 : |f (x)− fB0 | > α}|µ ≤ C1e
− c2α
nfnδ-BMO |B0|µ (158)

for all α > 0, f ∈ δ-BMO and δ0-local balls B0.

In the global case δ = δ0 = ∞, this lemma is a special case of Theorem 2 in
chapter III of Stromberg and Torchinsky [43]. The lemma can also be proved in this
case by adapting the original argument of John and Nirenberg [23], as executed in
sections 3.6 and 3.7 of chapter IV of Stein [42], to the grid of ”dyadic cubes” in a
homogeneous space as constructed in Christ [4], or the authors’ [41]. For the reader’s
convenience, we give this latter proof in the local setting following the corollary on
A2 weights.

Corollary 46 Given δ > 0, there are positive constants δ0, C1 and c2 such that��ef��
δ0-A2

≤
�
1 +

C1nfnδ-BMO

c2−nfnδ-BMO

�2
whenever nfnδ-BMO < c2.

The corollary is easily obtained from the lemma by integrating (158) to obtain

1

|B0|µ

]
B0

e|f−fB0 |dµ= 1

|B0|µ

] ∞
−∞

eα |{x ∈ B0 : |f − fB0 | > α}|µ dα

≤ 1 + C1
] ∞
0

e
α
�
1− c2
nfnδ-BMO

�
dα = 1 + C1

nfnδ-BMO

c2 − nfnδ-BMO

for δ0-local balls B0 whenever nfnδ-BMO < c2, and then computing#
1

|B0|µ

]
B0

efdµ

$#
1

|B0|µ

]
B0

e−fdµ

$

=

#
1

|B0|µ

]
B0

e(f−fB0)dµ

$#
1

|B0|µ

]
B0

e−(f−fB0)dµ

$

≤
#

1

|B0|µ

]
B0

e|f−fB0 |dµ
$#

1

|B0|µ

]
B0

e|f−fB0 |dµ
$

≤
�
1 +

C1 nfnδ-BMO

c2 − nfnδ-BMO

�2
.
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Proof. (of Lemma 45) We begin by recalling the grid of ”dyadic cubes” in a homo-
geneous space. There is a constant λ > 1 such that for every m ∈ Z, there are points
xkj ∈ Ω and Borel sets Qkj , 1 ≤ j < nk, k ≥ m (where nk ∈ N ∪ {∞}) depending on
m, such that

B
�
xkj ,λ

k
�
⊂ Qkj ⊂ B

�
xkj ,λ

k+1
�
for 1 ≤ j < nk, k ≥ m

Ω = ∪jQkj , for k ≥ m
Qki ∩Qki3 = φ for k ≥ m, i 9= i3
Either Qkj ⊂ Qc

i or Q
k
j ∩Qc

i = φ for 1 ≤ j < nk, 1 ≤ i < nc,m ≤ k < c

. (159)

We denote by Dm the collection of the ”dyadic cubes” Qkj for k ≥ m. For a construc-
tion of such a collection D in the case m = −∞, see M. Christ [4]. A construction of
the collection Dm for m ∈ Z appears in the authors’ paper [41]. We say that a dyadic
cube Qkj is δ-local if the ball B

�
xkj ,λ

k+1
�
is δ-local, i.e. 0 < λk+1 < δ dist

�
xkj , ∂Ω

�
,

and we write δ-Dm for the collection of δ-local dyadic cubes Qkj for k ≥ m.
Fix m ∈ Z. We begin by establishing the dyadic distribution inequality: there

exist C1, c2 > 0 independent of m such that

|{x ∈ Q0 : |fm (x)− fQ0 | > α}|µ ≤ C1e
− c2α
nfnδ-BMO |Q0|µ (160)

for all α > 0, dyadic cubes Q0 ∈ δ-Dm, and f ∈ δ-BMO with nfnδ-BMO = 1. The
function fm is the expectation of f on the dyadic decomposition Ω =

�
Qmj

�
j
:

fm (x) =
[
j

fQm
j
χQm

j
(x) =

[
j

#
1��Qmj ��µ

]
Qm
j

fdµ

$
χQm

j
(x) . (161)

Let Mµ denote the dyadic maximal operator

Mµ h (x) = sup
x∈Q

1

|Q|µ

]
Q

|h| dµ,

where it is understood that the supremum is taken over all dyadic cubes Q ∈ δ-Dm.
Now if Qkj ∈ δ-Dm, then by (159),���fB(xkj ,λk+1) − fQk

j

���= ����� 1��Qkj ��µ
]
Qk
j

�
f − fB(xkj ,λk+1)

�
dµ

�����
≤ 1���B �xkj ,λk����

µ

]
B(xkj ,λk+1)

���f − fB(xkj ,λk+1)��� dµ.
We then have for Q = Qkj ∈ δ-Dm,

1

|Q|µ

]
Q

|f − fQ| dµ (162)

≤ 1

|Q|µ

]
Q

���f − fB(xkj ,λk+1)��� dµ+ ���fB(xkj ,λk+1) − fQ���
≤ 2���B �xkj ,λk����

µ

]
B(xkj ,λk+1)

���f − fB(xkj ,λk+1)��� dµ
≤ 2C0���B �xkj ,λk+1����

µ

]
B(xkj ,λk+1)

���f − fB(xkj ,λk+1)��� dµ ≤ 2C0,
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since nfnδ-BMO = 1, and where C0 is a doubling constant such that |B (x, rλ)|µ ≤
C0 |B (x, r)|µ.
Fix a dyadic cube Q0 ∈ δ-Dm and let h = (f − fQ0)χQ0

. From (162) we obtain
that for Q ⊃ Q0,

1

|Q|µ

]
Q

|h| dµ ≤ 1

|Q0|µ

]
Q0

|f − fQ0 | dµ ≤ 2C0.

Now for α > 0, let
Ωα =

�
x ∈ Ω :Mµ h (x) > α

�
,

and note that for α ≥ 2C0, the inequality above, plus the dyadic structure, yields
Ωα ⊂ Q0. Let Cα be the collection of dyadic cubes Q ∈ δ-Dm such that the average
of |h| over Q exceeds α. Note that the cubes in Cα are proper subcubes of Q0. Then
let {Qα,j}j be the collection of maximal dyadic cubes in Cα. Then we have

(a) for each α ≥ 2C0, the Qα,j are pairwise disjoint,

(b) for each α ≥ 2C0, ∪jQα,j = Ωα ⊂ Q0,
(c) If 2C0 ≤ α < β, and i, j are given, then either Qβ,j ⊂ Qα,i or Qβ,j∩Qα,i =

φ.

To see part (c), note that if the cubes intersect, then one is contained in the other
by the dyadic structure, and so Qβ,j ⊃ Qα,i properly would violate maximality. Now
denote the distribution function of Mµ h (x) by

λ (α) = |Ωα|µ =
���x ∈ Ω :Mµ h (x) > α

���
µ
.

Let C1 be a doubling constant for the dyadic cubes:��� hQ���
µ
≤
���B �xk+1i ,λk+2

����
µ
≤ C1

���B �xkj ,λk����
µ
≤ C1 |Q|µ , (163)

whenever Q = Qkj ⊃ B
�
xkj ,λ

k
�
and hQ = Qk+1i ⊂ B

�
xk+1i ,λk+2

�
with Q ⊂ hQ. We

claim that with γ = γ (α) = 1 + 4C0C1
α and α ≥ 2C0,

|Ωγα ∩Qα,j |µ ≤
1

2
|Qα,j |µ , for all j. (164)

To see this, note first that if jQα,j is the dyadic predecessor of Qα,j , then jQα,j ⊂ Q0
and ���hjQα,j ��� ≤ 1���jQα,j

���
µ

]
jQα,j |h| dµ ≤ α,

by the maximality of the dyadic cubes Qα,j . Now let g = χ jQα,j
�
h− hjQα,j

�
. Take

γ ≥ 1 and x ∈ Ωγα ∩ Qα,j . By properties (b) and (c) above, there is, for some i, a
dyadic cube Qγα,i containing x with Qγα,i ⊂ Qα,j such that

γα <
1

|Qγα,i|µ

]
Qγα,i

|h| dµ ≤ 1

|Qγα,i|µ

]
Qγα,i

|g| dµ+
���hjQα,j

��� ≤ 1

|Qγα,i|µ

]
Qγα,i

|g| dµ+α.

Thus we have

Mµ g (x) > γα− α = (γ − 1)α, for x ∈ Ωγα ∩Qα,j .
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Now we use the nested property of dyadic cubes in a crucial way. Since jQα,j ⊂ Q0,
we have for x ∈ jQα,j ,

g (x) = h (x)− hjQα,j = (f (x)− fQ0)− (f − fQ0)jQα,j = f (x)− fjQα,j ,
and thus the weak type inequality for the dyadic maximal operator Mµ (which has
constant 1) yields

|Ωγα ∩Qα,j |µ ≤
���Mµ g > (γ − 1)α

���
µ
≤ 1

(γ − 1)α

]
|g| dµ

=
1

(γ − 1)α

]
jQα,j

���f − fjQα,j ��� dµ ≤ 1

(γ − 1)α2C0
���jQα,j

���
µ

≤ 1

(γ − 1)α2C0C1 |Qα,j |µ ,

for α ≥ 2C0 by (162) and (163). This establishes (164) with γ = γ (α) = 1 + 4C0C1
α .

Now sum (164) in j to obtain

λ (α+ 4C0C1) = λ (γ (α)α) = |Ωγα|µ ≤
1

2
|Ωα|µ =

1

2
λ (α) , (165)

for all α ≥ 2C0. We now obtain that with c2 = log 2
4C0C1

,���x ∈ Q0 :Mµ h (x) > α
���
µ
≤ C 3e−c2α |Q0|µ

for all α ≥ 2C0 by iterating (165) and using |Ω2C0 |µ ≤ |Q0|µ. For α ≤ 2C0, we
simply use

�
x ∈ Q0 :Mµ h (x) > α

�
⊂ Q0, and increase C 3 to e2C0c2 if necessary, to

obtain that ���x ∈ Q0 :Mµ

�
(f − fQ0)χQ0

�
(x) > α

���
µ
≤ C 3e−c2α |Q0|µ

for all α > 0. Next we observe that

Mµ

�
(f − fQ0)χQ0

�
≥Mµ

�
(fm − fQ0)χQ0

�
≥ |fm − fQ0 |χQ0

by the dyadic structure (159), and this proves (160).
We can now obtain (158) as follows. There is a positive constant C with the

following property: Given a ball B0 = B (x0, r) and m ∈ Z with λm � r, let k > m
be determined by λk < r ≤ λk+1. Then there exist dyadic cubes

�
Qkj
�
j∈F in Dm

such that
B0 ⊂ ∪j∈FQkj ⊂ B∗0 ≡ B (x0, Cr) .

A packing argument shows that #F ≤ C. Indeed, the engulfing and doubling prop-
erties of the balls show there are positive constants C 3, C 33 such that

|B∗0 |µ = |B (x0, Cr)|µ ≤
���B �xkj , C 33λk����

µ
≤ C 3

���B �xkj ,λk����
µ
≤ C 3

��Qkj ��µ
for j ∈ F , and adding these inequalities we obtain

(#F ) |B∗0 |µ ≤ C3
[
j∈F

��Qkj ��µ ≤ C |B∗0 |µ .
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Now choose δ0 > 0 sufficiently small that the ball B (x,Cr) is δ-local whenever
x ∈ Ω and the ball B (x, r) is δ0-local. Then if B0 = B (x0, r) is δ0-local, and E is
any subset of B∗0 with |E|µ ≥ c |B∗0 |µ, we have

��fB∗0 − fE��=
����� 1

|E|µ

]
E

�
f − fB∗0

�
dµ

�����
≤ C

|B∗0 |µ

]
B∗0

��f − fB∗0 �� dµ ≤ C
since nfnδ-BMO = 1 and B

∗
0 is δ-local. It follows with E = B0, Q

k
j that���fB0 − fQk

j

��� ≤ 2C, j ∈ F. (166)

Thus for α > 4C, (166) shows that
���fm (x)− fQk

j

��� > α
2 whenever |fm (x)− fB0 | > α,

and so by (160),

|{x ∈ B0 : |fm (x)− fB0 | > α}|µ ≤
[
j∈F

���qx ∈ Qkj : ���fm (x)− fQk
j

��� > α

2

r���
µ
(167)

≤
[
j∈F

C 3e−c2
α
2

��Qkj ��µ
≤C33e−

c2
2 α |B0|µ ,

and hence also for all α > 0 upon increasing C 33 to e
c2
2 4C if necessary.

We have that fm (x) → f (x) for µ-almost every x in B0 by a standard general-
ization of the corollary concerning differentiation of integrals on page 13 of [42]. In
establishing this generalization, we use the fact that our standing assumption (74),
which is equivalent to the hypothesis d (x, y) ≥ c |x− y| of Theorem 6 with c = C−1euc,
shows that the Euclidean diameters of the balls B (x, r) shrink to 0 as r → 0. Thus
the Euclidean diameters of the dyadic cubes Qmj also shrink to 0 as m → −∞, and
this yields that limm→−∞ 1

|Qm
j |
U
Qm
j
g = g (x) if g is continuous at x, where it is un-

derstood that x ∈ Qmj . The maximal theorem on page 13 of [42] then completes the
proof that limm→−∞ fm = f µ-a.e. using a familiar argument.
We thus obtain from Fatou’s lemma, upon letting m→ −∞ in (167), that

|{x ∈ B0 : |f (x)− fB0 | > α}|µ =
]

χ{x∈B0:|f(x)−fB0 |>α}dµ

≤
]
lim inf

m→−∞χ{x∈B0:|fm(x)−fB0 |>α}dµ

≤ lim inf
m→−∞

]
χ{x∈B0:|fm(x)−fB0 |>α}dµ

= lim inf
m→−∞ |{x ∈ B0 : |f

m (x)− fB0 | > α}|µ

≤C 33e−
c2
2 α |B0|µ ,

for all α > 0. This proves (158) for nfnδ-BMO = 1, and the general case follows upon
replacing f and α with f

nfnδ-BMO
and α

nfnδ-BMO
.
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3.3.2 Logarithmic energy inequality for positive solutions

Here we will obtain (155) for a δ-local ball B (y, C0r)with v = log u for a nonnegative
solution u to (99), in fact for u a nonnegative supersolution to (99). To see this, let
y and r be as above, i.e. y ∈ Ω and 0 < C0r < δ dist (y, ∂Ω), and let

H (t) = log 1

t+m (r)
, for t > 0,

with m (r) = r2η nfn q
2
+ rη ngnq and 0 < η < 1 − Q

q as above, so that v (x) =
log u (x) = −H (u (x)). As usual, if m (r) = 0, we replace it with m > 0 and later let
m→ 0. We shall not use equation (116) for v here. Instead, we use equation (99) for u
along with the standard choice of testing function w = −ψ2H3 (u) = ψ2 (u+m (r))−1

(see however Remark 14, where this choice arises as w = ψ2h (u)h3 (u) in the class

A [u] with h (t) =
t
2 log t+m(r)m(r) ). Note the equalities

H3 (t) =− (t+m (r))−1 , (168)

H33 (t) = (t+m (r))−2 ,
|H3 (t)|2 =H33 (t) ,

for 0 < t <∞. Let ψ = ψ1 be as in (20). With w = −ψ2H3 (u) in (102), we obtain]
ψ2H33 (u) n∇un2 (169)

≤−2
]
kψH3 (u)∇u,∇ψl −

]
ψ2H3 (u) f +

]
ψ2H3 (u)uF

−2
]

ψH3 (u)gTψ −
]

ψ2H33 (u)gTu+ 2
]

ψH3 (u)uGSψ

+

]
ψ2H33 (u)uGSu+

]
ψ2H3 (u)HRu.

Applying Cauchy’s inequality to the first integral on the right side of (169), we have
for any 0 < ε < 1,����2] kψH3 (u)∇u,∇ψl����≤ ε2

]
ψ2H3 (u)2 n∇un2 + 1

ε2

]
n∇ψn2

≤ ε2
]

ψ2H3 (u)2 n∇un2 + C 1
ε2
r−2 |B (y, r)| ,

since Hölder’s inequality, p ≥ 2, (20) and (27) yield

]
n∇ψn2 ≤ |B (y, r)|

+
1

|B (y, r)|

]
B(y,r)

n∇ψnp
, 2

p

≤CsymC2pr−2 |B (y, r)| .

Applying Cauchy’s inequality to the fifth integral on the right side of (169), we have����] ψ2H33 (u)gTu
����≤ ε2

]
ψ2H33 (u) |Tu|2 + 1

ε2

]
ψ2H33 (u) |g|2

≤Cε2
]

ψ2H33 (u) n∇un2 + C 1
ε2
m (r)

−2 ngn2q |B (y, r)|
1− 2

q
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≤Cε2
]

ψ2H33 (u) n∇un2 + C 1
ε2
r−2η |B (y, r)|1−

2
q

≤Cε2
]

ψ2H33 (u) n∇un2 + C 1
ε2
r−2 |B (y, r)| ,

by (168), since the vector fields T are subunit, and since q (1− η) > Q implies
|B (y, r)| ≥ crq(1−η) by (10). Now H33 (u)u2 is bounded by (168), and so we estimate
the seventh integral on the right side of (169) similarly by����] ψ2H33 (u)uGSu

����≤ ε2
]

ψ2H33 (u) |Su|2 + 1

ε2

]
ψ2H33 (u)u2 |G|2

≤Cε2
]

ψ2H33 (u) n∇un2 + C 1
ε2
nGn2q |B (y, r)|

1− 2
q

≤Cε2
]

ψ2H33 (u) n∇un2 + C 1
ε2
nGnq r−2 |B (y, r)| ,

since the vector fields S are subunit, and since q > Q implies |B (y, r)| ≥ crq by (10).
The second, third, fourth and sixth integrals on the right side of (169) are similarly

estimated by ����] ψ2H3 (u) f
����≤C nfn q2 m (r)−1 |B (y, r)|1− 2

q

≤Cr−2η |B (y, r)|1−
2
q

≤Cr−2 |B (y, r)| ,

and ����] ψ2H3 (u)uF
���� ≤ C nFn q2 |B (y, r)|1− 2

q ≤ C nFn q
2
r−2 |B (y, r)| ,

using that H3 (u)u is bounded by (168), and also both����2] ψH3 (u)gTψ
����≤C ngnq nTψnpm (r)−1 |B (y, r)|1− 1

q− 1
p

≤Cr−η nTψnp |B (y, r)|
1− 1

q− 1
p

≤Cr−2 |B (y, r)| ,

and ����2] ψH3 (u)uGSψ
����≤C nGnq nSψnp |B (y, r)|1− 1

q− 1
p

≤C nGnq r−2 |B (y, r)| ,

since
nTψnp + nSψnp ≤ C nn∇ψnnp ≤ C

s
CsymCp |B (y, r)|

1
p r−1

by (20) and (27). Finally, the eighth term on the right side of (169) satisfies����] ψ2H3 (u)HRu
����≤ ε2

]
ψ2H3 (u)2 |Ru|2 + 1

ε2

]
ψ2 |H|2

≤ ε2
]

ψ2H3 (u)2 n∇un2 + C 1
ε2
nHn2q r−2 |B (y, r)| .

78



Combining these estimates yields]
ψ2
k�
1− Cε2

�
H33 (u)− ε2H3 (u)2

l
n∇un2 ≤ C 1

ε2
r−2 |B (y, r)| . (170)

Now H33 = (H3)2 by (168), and sok�
1− Cε2

�
H33 (u)− ε2H3 (u)2

l
n∇un2 =

k�
1− Cε2 − ε2

�
H3 (u)2

l
n∇un2

=
�
1− Cε2 − ε2

�
n∇vn2 .

Thus with ε > 0 small enough, we obtain]
ψ2 n∇vn2 ≤ C3r−2 |B (y, r)| , (171)

and from (171) and the doubling assumption on the balls B (y, r), we obtain (155)
whenever u is a nonnegative supersolution of (99) and v = −H (u) with H as above.
Note that the constants C in (170) and C3 in (171) depend on nFn q

2
, nGnq and nHnq,

but not on nfn q
2
or ngnq.

Inequalities (154) and (155), together with Corollary 46, prove the following
strong Harnack inequality.

Theorem 47 Suppose that u is a nonnegative weak solution to (99) in B (y, r) with
y ∈ Ω, 0 < r < δ dist (y, ∂Ω) for sufficiently small δ > 0, that (24), (23), (15) and
(17) hold for some q > Q = max {Q∗, 2σ3}, as well as (20) for some p > max {2σ3, 4}.
Then u satisfies the strong Harnack inequality

ess sup
x∈B(y,c2r)

(u (x) +mq,η (r)) ≤ CHaress inf
x∈B(y,c2r)

(u (x) +mq,η (r)) , (172)

where mq,η (r) = r2η nfn q
2
+ rη ngnq, q (1− η) > Q = max {Q∗, 2σ3}, and the con-

stants c2 and CHar depend on nFn q
2
, nGnq and nHnq, but are independent of u,

B (y, r), nfn q
2
and ngnq.

3.4 Hölder continuity of solutions
We can now deduce Hölder continuity from the Harnack inequality (172) in the usual
way. Let u ∈W 1,2 (Ω) be a weak solution of (99) in Ω. Then u is locally bounded in
Ω by Proposition 44.
Fix y ∈ Ω and 0 < ρ < 1 such that B (y,Cρ) is δ-local. For 0 < r ≤ ρ, define the

oscillation
ω (r) = ess sup

x∈B(y,r)
u (x)− ess inf

x∈B(y,r)
u (x) .

We may assume ω (r) > 0 since otherwise there is nothing to prove. Clearly we have

ω (r) ≤ 2C3K
�
1 + nunL2(Ω)

�
<∞, and by adding the constant

M = −1
2

#
ess sup

B(y,r)

u+ ess inf
B(y,r)

u

$
to u we may assume

ess sup
x∈B(y,r)

(u (x) +M) = −ess inf
x∈B(y,r)

(u (x) +M) =
1

2
ω (r) .
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Then u+ = 1+ u+M
1
2ω(r)

and u− = 1− u+M
1
2ω(r)

satisfy (u± does not have the usual meaning
here)

Lu± = ±
f

1
2ω (r)

±T3
�

g
1
2ω (r)

�
+ F

�
1± M

1
2ω (r)

�
+ S3G

�
1± M

1
2ω (r)

�
,

they are both nonnegative in B (y, r), and either ess supB(y,c2r) u+ ≥ 1 or ess
supB(y,c2r) u− ≥ 1 since u+ + u− = 2. Suppose the former holds. Then

ess sup
B(y,c2r)

(u+ + hm (r)) ≥ ess sup
B(y,c2r)

u+ ≥ 1,

and the Harnack inequality (172) shows that

u+ (x) + hm (r) ≥ c > 0
for a.e. x ∈ B (y, c2r), where c = C−1Har,

hm (r) = r2η ���� f
1
2ω (r)

+ F

�
1 +

M
1
2ω (r)

�����
q
2

+rη

+���� g
1
2ω (r)

����q
q

+

����G�1 + M
1
2ω (r)

�����q
q

, 1
q

≤ 2ω (r)−1
�
m (r) + r2η nFn q

2

����12ω (r)±M
����+ rη nGnq ����12ω (r) +M

�����
≤ 2ω (r)−1

q
m (r) + r2η nFn q

2
N (r) + rη nGnqN (r)

r
,

and
N (r) =

���χB(y,r)u���
L∞

is nondecreasing in r, and 0 < c < 1 depends on nFn q
2
, nGnq and nHnq, but is

independent of nfn q
2
and ngnq. Note that we have used the inequalities����12ω (r) +M

����= ����ess inf
B(y,r)

u

���� ≤ N (r) ,����12ω (r)−M
����=

�����ess sup
B(y,r)

u

����� ≤ N (r) .
Thus with

σ (r) = m (r) +N (r)
�
r2η nFn q

2
+ rη nGnq

�
,

we have σ nondecreasing and

c ≤ u+ (x) + hm (r) ≤ 1 + u (x) +M1
2ω (r)

+ 2ω (r)−1 σ (r) ,

or
−1
2
ω (r) (1− c)− σ (r) ≤ u (x) +M ≤ 1

2
ω (r) ,

for a.e. x ∈ B (y, c2r), and it follows that

ω (c2r) ≤
�
1− 1

2
c

�
ω (r) + σ (r) , 0 < r ≤ ρ. (173)
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The same estimate holds if instead of having ess supB(y,r) u+ ≥ 1, we have ess
supB(y,r) u− ≥ 1.
We now apply Lemma 8.23 of [14] which we record verbatim here for the reader’s

convenience.

Lemma 48 Let ω be a nondecreasing function on an interval (0, R0 ] satisfying, for
all R ≤ R0, the inequality

ω (τR) ≤ γω (R) + σ (R)

where σ is also nondecreasing and 0 < γ, τ < 1. Then, for any µ ∈ (0, 1) and R ≤ R0,
we have

ω (R) ≤ C
��

R

R0

�α
ω (R0) + σ

�
RµR1−µ0

��
where C = C (γ) and α = α (γ, τ , µ) are positive constants.

From the lemma we obtain that for any µ ∈ (0, 1),

ω (r) ≤ C
��

r

ρ

�α
ω (ρ) + σ

�
rµρ1−µ

��
,

where an examination of the proof of Lemma 8.23 in [14] reveals that

α= (1− µ) log γ
log τ

= (µ− 1) log 1
c2

�
1− 1

2
c

�
> 0.

Using σ (s) ≤
�
s
ρ

�η
σ (ρ) for 0 < s < ρ < 1, with s = rµρ1−µ, we thus obtain

ω (r) ≤ C3
��

r

ρ

�α
ω (ρ) +

�
r

ρ

�ηµ
σ (ρ)

�
, 0 < r < ρ < 1,

for a positive constant C 3 depending on c (and so also on nFn q
2
, nGnq and nHnq),

but not on nfn q
2
, ngnq or nunL2 . Now choose µ ∈ (0, 1) so that

α = (µ− 1) log 1
c2

�
1− 1

2
c

�
< ηµ

to obtain

ω (r) ≤ C (ω (ρ) + σ (ρ))

�
r

ρ

�α
, 0 < r ≤ ρ < 1, (174)

where C depends on c, nFn q
2
, nGnq and nHnq. After possible redefinition on a set

of measure zero, u is Hölder continuous of order α on B (y, ρ) with respect to the
quasimetric d, and we then obtain for any compact set K ⊂ Ω that nunCαquasi(K) <∞
where Cα

quasi (K) is as in (28). If we now invoke the containment condition (11), so
that d (x, y) ≤ C |x− y|ε, we obtain that u is Hölder continuous of order εα in the
usual Euclidean sense, i.e. nunCεα(K) <∞ where Cα (K) is as in (8).
This completes the proof of Theorem 6.
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Remark 16 The Hölder exponent α in (174) satisfies the estimate

1

α
≈ 1

η
+
1

c
,

which is independent of u, B (y, r), nfn q
2
and ngnq.

In the next theorem, we record the precise constants in estimate (174) using

ω (ρ) + σ (ρ) ≤ N (r) +m (r) +N (r)
�
r2η nFn q

2
+ rη nGnq

�
,

and the bound for N (r) given in (148).

Theorem 49 Suppose that u is a weak solution to (99) in B
�
y, ρc1

�
with y ∈ Ω,

0 < ρ < δ dist (y, ∂Ω) for sufficiently small δ, where c1 is as in (148), and that (24),
(23), (15) and (17) hold for some q > Q = max {Q∗, 2σ3}, as well as (20) for some
p > max {2σ3, 4}. Then u satisfies the following Hölder estimate:

|u (x)− u (x3)|≤C


 1���B �y, ρc1����

]
B
�
y, ρc1

� u2
 1

2

(175)

+ρ2η nfn
L
q
2

�
B
�
y, ρc1

�� + ρη ngn
Lq
�
B
�
y, ρc1

����d (x, x3)
ρ

�α
,

for x, x3 ∈ B (y, ρ) where α and C depend on c = C−1Har, nFn q2 , nGnq and nHnq,
but are independent of u, B (y, ρ), nfn q

2
and ngnq. If in addition the containment

condition (11) holds, then we can replace d (x, x3) with C |x− x3|ε.

See Remarks 22 and 26 for an explicit estimate of the quasimetric d (x, y) in the
special cases of noninterference and flag balls respectively.

4 Reduction of the proofs of the rough diagonal extensions of
Hörmander’s theorem

In the first subsection here, we complete the proof of Theorem 7, our rough ana-
logue of the Fefferman-Phong subellipticity theorem, by establishing the existence
of accumulating sequences of Lipschitz cutoff functions as in (20), for the subunit
balls K (y, r). Then in the next three subsections, we develop the tools necessary
for obtaining Theorem 9, and more generally Theorem 61, our general extension of
Hormander’s theorem to rough diagonal vector fields. We will collect a variety of
conditions, each inherited by locally equivalent families of balls, together in a basic
axiom postulating the existence of a prehomogeneous space, with properties appro-
priate for use in the hypotheses of Theorems 6 and 7. In the proof of Theorem 61, we
show that the axiom holds for a particular prehomogeneous space, and thus obtain
that it also holds for a locally equivalent symmetric general homogeneous space for
which we have established Sobolev and Poincaré inequalities. The three subsections
discuss respectively general consequences of the basic axiom, Sobolev and Poincaré
inequalities, and finally the proportional subrepresentation inequality, the main con-
dition in the basic axiom. Theorems 9 and 61 then reduce the proofs of Theorems 13
and 15 to demonstrating that for δ > 0 sufficiently small, the flag and noninterference
balls form a δ-local prehomogeneous space B and a δ-local homogeneous space A re-
spectively, that are adapted to the vector fields, as well as satisfying reverse doubling
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and size-limiting properties respectively. The strategy is to use these conditions to
first obtain the local equivalence of the spaces B and A with the subunit balls K,
and then to apply Theorem 61. At the end of the section, we turn to proving the
sharp technical results, Theorems 18 and 19, again assuming adaptablility of balls
to vector fields, but this time establishing directly the ”accumulating sequence of
Lipschitz cutoff functions” condition (20), as the associated spaces B and A need no
longer be locally equivalent to the space K of subunit balls.

4.1 Accumulating sequences of Lipschitz cutoff functions in
annuli

Here we establish the existence of accumulating sequences of Lipschitz cutoff func-
tions as in (20), for the subunit balls K (y, r) provided Q (x, ξ) is continuous in x
and the containment condition (19) holds. First we record the simple facts that if
the quadratic form Q (x, ξ) is continuous, then the subunit metric δ in Definition 3 is
an increasing pointwise limit of the Lipschitz continuous metrics δε associated to the
forms Q (x, ξ) + ε2 |ξ|2, and that the gradients of the metrics δε satisfy a pointwise
bound in the norm n·nQ, uniformly in ε > 0.

Lemma 50 Suppose that the quadratic form Q (x, ξ) is continuous for x ∈ Ω, and let
δ (x, y) denote the subunit metric in Ω associated to Q as in Definition 3. For ε ≥ 0,
set Qε (x, ξ) = Q (x, ξ) + ε2 |ξ|2 and let δε (x, y) be the corresponding subunit metric.
Then for ε > 0, δε is Lipschitz continuous with norm 1

ε , and δε (x, y) increases to
δ (x, y) as ε → 0 for all x, y ∈ Ω, so that δ is lower semicontinuous (and possibly
infinite). Moreover, δε satisfies

n∇xδε (x, y)nQ ≤
√
n, x, y ∈ Ω, (176)

uniformly in ε > 0, where n·nQ is as in (14).

Remark 17 This inequality was obtained with ε = 0 in a distributional sense in
[12] and [11] with a larger constant under the additional hypotheses that Q (x, ξ) =SN

j=1 (Xj (x) · ξ)
2 is a sum of squares of Lipschitz continuous vector fields Xj, and

that δ is bounded above on Ω×Ω. More precisely, under these conditions they showed
that ����] f (Xjϕ)

���� ≤ C ] |ϕ (x)| , ϕ ∈ D (Ω) , (177)

where f (x) = δ (x, y) for y fixed, and D (Ω) is the space of infinitely differentiable
functions with compact support in Ω. This also follows from (176) by first noting
that if fε = δε (·, y) for fixed y ∈ Ω and ε > 0, then fε increases monotonically to
f , which is now assumed bounded. Thus if Xj =

Sn
i=1 aij (x)

∂
∂xi
, then |Xjfε| ≤

n∇fεnQ ≤
√
n by (176), and so by Lebesgue’s dominated convergence theorem,����] f (Xjϕ)

����= ���� limε→0
]
fε (Xjϕ)

���� = ���� limε→0
] �

X 3jfε
�
ϕ

����
≤ lim inf

ε→0

] ���X 3jfε�ϕ��
≤ lim inf

ε→0

]
|(Xjfε)ϕ|+

n[
i=1

] ����∂aij∂xi
fεϕ

����
≤ lim inf

ε→0
nXjfεn∞

]
|ϕ|+

n[
i=1

����∂aij∂xi

����
∞
nfn∞

]
|ϕ|
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≤
#
√
n+

n[
i=1

����∂aij∂xi

����
∞
nfn∞

$]
|ϕ| ,

where
���∂aij∂xi

���
∞
is interpreted as in Remark 5. Lemma 50 also yields the following

distributional inequality for general quadratic forms Q (x, ξ) = ξ3Q (x) ξ (different
from (177) in the case Q is a sum of squares of Lipschitz vector fields)����] f (x)

�
∇3Qϕ

�
(x) dx

���� ≤ √n] s
Q (x,ϕ (x))dx, ϕ ∈ D (Ω) , (178)

under the additional hypotheses that Q (x, ξ) is Lipschitz continuous in x and δ is
bounded above. Here D (Ω) is the space of vector functions ϕ = (ϕ1, ...,ϕn) with
ϕi ∈ D (Ω), 1 ≤ i ≤ n. Indeed, fix y and set fε = δε (·, y) for ε > 0 as above. Then
∇3Qϕ is integrable and so by Lebesgue’s dominated convergence theorem,����] f

�
∇3Qϕ

�����= ���� limε→0
]
fε
�
∇3Qϕ

����� = ���� limε→0
]
(∇fε)3Qϕ

����
≤ lim inf

ε→0

] t
(∇fε)3Q (∇fε)

s
ϕ3Qϕ

≤
√
n

] s
ϕ3Qϕ

by (176).

Proof. (of Lemma 50) Since δε is a symmetric metric, we have

|δε (x, y)− δε (z, y)| ≤ δε (x, z) ≤ |x− z|
ε

,

where the final inequality follows upon considering the following curve joining x to
z, that is subunit with respect to Qε:

γ (t) = x+
ε

|z − x| t (z − x) , 0 ≤ t ≤ |x− z|
ε

.

Thus δε is Lipschitz continuous with norm 1
ε . Next note that δ

ε1 (x, y) ≤ δε2 (x, y) ≤
δ (x, y) for 0 < ε2 < ε1 follows from Q + ε1I � Q + ε2I � Q. Now suppose that
δε (x, y) < r for all ε > 0, and choose, for each 0 < ε < 1, a Lipschitz curve γε (t)
satisfying (note that we may stop the curve γε as soon as it hits x)

γε (0) = y,

γε (r) = x,��(γε)3 (t) · ξ��2 ≤Q (γε (t) , ξ) + ε2 |ξ|2 .

Since Q (x, ξ) is bounded in x, the family {γε (t) · ξ}0<ε<1 is equicontinuous in t, and
there is a continuous curve γ (t) and a sequence {εi}∞i=1 with limi→∞ εi = 0, such
that limi→∞ γεi (t) = γ (t) uniformly on [0, r]. It now follows that γ (t) is Lipschitz
and satisfies

γ (0) = y,

γ (r) = x,

|γ3 (t) · ξ|2 ≤Q (γ (t) , ξ) ,
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where the third line follows by considering a fixed difference quotient and letting
i→∞ as follows:����γ (t+ h) · ξ − γ (t) · ξ

h

����2 = lim
i→∞

����γεi (t+ h) · ξ − γεi (t) · ξ
h

����2
≤ lim inf

i→∞
��(γεi)3 (t+ cih) · ξ��2

≤ lim inf
i→∞

q
Q (γεi (t+ cih) , ξ) + ε2i |ξ|

2
r

=Q (γ (t+ ch) , ξ)

upon taking a further subsequence such that ci → c, and using the uniform conver-
gence of γεi to γ, along with the continuity of Q (x, ξ) in x. Now let h→ 0 and use
the continuity of Q (x, ξ) in x once more to obtain |γ3 (t) · ξ|2 ≤ Q (γ (t) , ξ). Thus
δ (x, y) ≤ r and this proves that δ (x, y) = limε→0 δε (x, y), and we’re done.
We now give an elementary proof of (176). Fix y ∈ Ω and set fε (x) = δε (x, y).

Then fε is Lipschitz continuous by what has already been proved. Now fix x ∈ Ω and
ε > 0 and let

�
λ2j
�n
j=1

and {vj}nj=1 be the eigenvalues and eigenvectors respectively
for the matrix Qε (x) = Q (x) + ε2I corresponding to the form Qε (x, ξ). Then for
1 ≤ j ≤ n and β < 1, the curve γj (t) = x+βtλjvj is subunit with respect to Qε for
t sufficiently small since�

γ3j (t) · ξ
�2
= (βλjvj · ξ)2

≤ β2
n[
i=1

λ2i (vi · ξ)
2
= β2ξ3Qε (x) ξ

< ξ3Qε (x+ βtλjvj) ξ = ξ3Qε
�
γj (t)

�
ξ

for small t by the continuity of Q (x). Thus δε (x, x+ βtλjvj) ≤ |t| for t small, and
since δε is a metric,

|βλjvj ·∇fε (x)|=
����limt→0 fε (x)− fε (x+ βtλjvj)

t

����
≤ lim sup

t→0

����δε (x, x+ βtλjej)

t

���� ≤ 1,
for β < 1 and 1 ≤ j ≤ n. Passing to the limit β → 1, we obtain

n∇fε (x)nQε =

#
n[
i=1

|λivi ·∇fε (x)|2
$ 1

2

≤
√
n,

proving (176) since n·nQ ≤ n·nQε .

Proposition 51 The ”accumulating sequence of Lipschitz cutoff functions” condi-
tion (20) holds in Ω with p =∞ for the subunit balls K (x, r), provided the quadratic
form Q (x, ξ)is continuous for x ∈ Ω and the containment condition (19) holds.

Proof. To see this, in (20) we take p = ∞, c = 1
2 , N = 2 and set ψj (x) =

ϕ3j (δ
ε3j (x, y)) where δε (x, y) is the subunit metric associated to the formQε (x, ξ) =

Q (x, ξ) + ε2 |ξ|2 for ε > 0, and εj will be chosen in a moment. Here we define ϕj (t)
for j ≥ 1 to vanish for t ≥ rj, to equal 1 for t ≤ rj+1 and to be linear on the interval
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[rj+1, rj ], where rj − rj+1 = r
5j2 , with r1 = r. From the chain rule and (176) we

obtain ��∇ψj��Q ≤ ��∇ϕ3j��∞ n∇xδε3j (x, y)nQ ≤ 5 (3j)2r

√
n.

Now we’ve already shown that limε→0 δε (x, y) = δ (x, y) on Ω. Since the convergence
is monotone and δ is continuous by assumption, δε (·, y) → δ (·, y) uniformly on
compact subsets of Ω (see e.g. Theorem 7.13 in [37]).
We now claim that for 0 < s < t < δ dist (x, ∂Ω), the annulus K (x, t) \K (x, s)

has positive Euclidean thickness, in fact with C and ε as in (11),

dist (K (x, s) ,K (x, t)c) ≡ inf
w∈K(x,s),z /∈K(x,t)

|w − z| ≥ (t− s)
1
ε

C
> 0.

To see this, take w ∈ K (x, s) and z /∈ K (x, t) so that δ (x,w) < s and δ (x, z) ≥ t.
Since δ is a metric, we have δ (w, z) > t− s. But then by (19),

D

#
w,
(t− s)

1
ε

C

$
⊂ K (w, t− s) ,

and so z /∈ D
�
w, (t−s)

1
ε

C

�
yields |w − z| ≥ (t−s) 1ε

C as required.

So by taking εj > 0 small enough, the Lipschitz function x→ ϕj (δ
εj (x, y)) will

have its derivative supported in the annulus K (y, rj−1)\K (y, rj+2) for j ≥ 1. Since
these annuli are pairwise disjoint and contained in K (y, r)\K

�
y, r2

�
for j ∈ 3N (sinceS∞

j=1
1
5j2 <

1
2), the sequence of functions

�
ψj
�∞
j=1
, with ψj (x) = ϕ3j (δ

ε3j (x, y)), is

now easily seen to satisfy (20) with p = ∞, c = 1
2 and N = 2. This completes the

proof of the proposition.

4.2 The axiom
Let X be a collection of continuous vector fields Xj = aj (x) ∂

∂xj
, 1 ≤ j ≤ n, on Ω

with a1 (x) ≡ 1 and set Aj (x, r) =
U r
0
aj (x1 + t, x2, ..., xn) dt, 1 ≤ j ≤ n, provided

the segment joining x and x + (r, 0, ..., 0) lies in Ω. In this subsection we introduce
our basic axiom regarding X , and derive some general consequences from it.

Axiom 1 There is a prehomogeneous space on Ω of open subsets B = {B (x, r)}x∈Ω,0<r<∞
as in Definition 28 (i.e. (56), (58), (60) and (62) hold), satisfying the convex hull
equivalence (12),

coB (x, r) ⊂ B (x,Cr) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) , (179)

and the doubling condition��� hB (x, 2r)��� ≤ C ��� hB (x, r)��� , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) , (180)

where hB (x, r) = Tn
j=1 [xj −Bj (x, r) , xj +Bj (x, r)] is the smallest closed rectangle

containing B (x, r) as defined in (89). Moreover, the prehomogeneous space of open
sets B is related to the collection of vector fields X by the following two properties:

1. The side-limiting inequality (note that A1 (x, r) ≡ r):

C−1 ≤ B1 (x, r)
r

≤ C, x ∈ Ω, 0 < r < δdist (x,∂Ω) . (181)
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2. The proportional subrepresentation inequality: for every 0 < β < 1, there is a
positive constant Cβ such that for all y ∈ Ω and 0 < r < δdist (y, ∂Ω),

|f (x)| ≤ Cβ
]
B(y,Cr)

|∇af (z)| K (x, z) dz, (182)

whenever f is Lipschitz continuous, x ∈ B (y, r) and |Z (f) ∩B (y, r)| ≥ β |B (y, r)|
where Z (f) denotes the zero set of f . Here, K (x, z) is given by

K (x, z) = d (x, z)

|B (x, d (x, z))| , (183)

where
d (x, y) = inf {r > 0 : y ∈ B (x, r)} . (184)

Note that (184) defines the quasimetric associated to the prehomogeneous space
as in Remark 7.

Remark 18 If B = {B (x, r)}x∈Ω,0<r<∞ is a prehomogeneous space of open subsets

on Ω, then the doubling condition (180) on the rectangles hB (x, r) implies doubling
for their half sidelengths Bj (x, r):

Bj (x, 2r) ≤ CBj (x, r) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) .

for 1 ≤ j ≤ n. Indeed, using only weak monotonicity (60) and doubling (180), we
have with 0 < c < 1 the constant in (60),

Bj
�
x, c−1r

�
=
2−n

��� hB �x, c−1r����T
i9=j Bi (x, c−1r)

≤
C 32−n

��� hB (x, r)���T
i9=j Bi (x, r)

= C 3Bj (x, r) .

Let us show that the properties (56), (58), (60), (62), (179), (180), (181) and (182)
of Axiom 1 persist for Ω-locally equivalent families of sets {B∗ (x, r)}x∈Ω,0<r<∞, pos-
sibly with a smaller positive constant δ0. Recall from subsection 2.3 that the families
of sets {B (x, r)}x∈Ω,0<r<∞ and {B∗ (x, r)}x∈Ω,0<r<∞ are Ω-locally equivalent if there
are positive constants C and δ such that

B (x, r) ⊂ B∗ (x,Cr) and B∗ (x, r) ⊂ B (x,Cr) , x ∈ Ω, 0 < Cr < δ dist (x, ∂Ω) .
(185)

It is this flexibility of the properties in Axiom 1 that makes the axiom useful in
dealing with the prehomogeneous space of flag balls in section 5. Now it is obvious
that (56), (60), (58), (62), (179) and (180) are inherited by an Ω-locally equivalent
family of sets. From Remark 18, the side limiting inequality (181) is also inherited.
Next we turn to the proportional subrepresentation inequality. We note that in the
presence of the engulfing and doubling properties, (56) and (62), d (x, y) in (184) may
be replaced by any equivalent function hd (x, y), since then

d (x, z)

|B (x, d (x, z))| ≈
hd (x, z)���B �x, hd (x, z)���� .

Lemma 52 Let B = {B (x, r)}x∈Ω,0<r<∞ and B∗ = {B∗ (x, r)}x∈Ω,0<r<∞ be fami-
lies of sets satisfying the engulfing and doubling properties, (56) and (62), and suppose
that they are Ω-locally equivalent in the sense that (185) holds. If the proportional
subrepresentation inequality (182) holds for B = {B (x, r)}x∈Ω,0<r<∞, then it holds
for B∗.

87



Proof. If (185) holds, then the corresponding kernels K and K∗ are equivalent.
Suppose we are given B∗ (y, r) with 0 < Cr < δ dist (x,∂Ω). Let x ∈ B∗ (y, r)
and let f Lipschitz satisfy |Z (f) ∩B∗ (y, r)| ≥ β∗ |B∗ (y, r)|, 0 < β∗ < 1. By the
equivalence of sets (185), B (y,Cr) ⊃ B∗ (y, r). Then we have x ∈ B (y, Cr) and
|Z (f) ∩B (y, Cr)| ≥ β |B (y, Cr)| for some 0 < β < 1. By (182) for the sets B, and
(185) again, we obtain

|f (x)|≤Cβ
]
B(y,CCr)

|∇af (z)| K (x, z) dz

≤CCβ
]
B∗(y,CC2r)

|∇af (z)| K∗ (x, z) dz,

which is (182) for the sets B∗.

Remark 7 and Lemma 29, together with the above discussion, now immediately
yield the following lemma which will prove useful in connection with the flag balls,
as they enjoy only the weak monotonicity property (60).

Lemma 53 Suppose that {B (x, r)}x∈Ω,0<r<∞ is a prehomogeneous space on Ω sat-
isfying Axiom 1. Let {B∗ (x, r)}x∈Ω,0<r<∞ be the general homogeneous space with
symmetric quasimetric d∗sym (x, y) as in Lemma 29, arising from the quasimetric
d (x, y) in Remark 7. Then the properties (56), (58), (60), (62), (179), (180), (181)
and (182) of Axiom 1 are satisfied with the balls B∗ (x, r) in place of the sets B (x, r).
Moreover, for some positive constant C, we have

B
�
x,C−1r

�
⊂ B∗ (x, r) ⊂ B (x,Cr) , 0 < r <∞.

In preparation for proving Sobolev and Poincaré inequalities in the next sub-
section, we show that for a general homogeneous space, the proportional subrep-
resentation inequality (182) implies the standard subrepresentation inequality for
Lipschitz continuous f : there are positive constants δ, C,C0 such that for all y ∈ Ω
and 0 < r < δ dist (y, ∂Ω),��f (x)− fB(y,r)��≤C ]

B(y,C0r)

|∇af (z)| K (x, z) dz (186)

+
Cr

|B (y, C0r)|

]
B(y,C0r)

|∇af (z)| dz,

for x ∈ B (y, r), where fB(y,r) = 1
|B(y,r)|

U
B(y,r)

f is the average value of f on B (y, r),
and the fractional integral kernel K is given by (183). The sharper version of (186)
with C0 = 1 is often available in special cases; see for example Remark 21 in section
4.4.1. Moreover, it is sometimes possible to drop the second term on the right side
of (186); see for example the discussion about reverse doubling of order 1 in Remark
9 of section 2.3.

Lemma 54 If the proportional subrepresentation inequality (182) holds with β =
1
2 for a general homogeneous space B = {B (x, r)}x∈Ω,0<r<∞, then the standard
subrepresentation inequality (186) holds.

Proof. Fix y ∈ Ω and 0 < r < δ dist (y, ∂Ω), and let ω be the median value of f on
B (y, r). Set

f+ (x) =

�
f (x)− ω, for f (x) > ω
0 for f (x) ≤ ω

,

f− (x) =
�
ω − f (x) , for f (x) < ω
0 for f (x) ≥ ω

,
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for x ∈ B (y, C0r), so that f (x)− ω = f+ (x)− f− (x). Then��f (x)− fB(y,r)��≤ |f (x)− ω|+
��fB(y,r) − ω

��
≤ |f+ (x)|+ |f− (x)|

+
1

|B (y, r)|

]
B(y,r)

|f+ (w)|

+
1

|B (y, r)|

]
B(y,r)

|f− (w)| .

Since |Z (f±) ∩B (y, r)| ≥ 1
2 |B (y, r)| we can apply (182) to each of f+ and f− with

β = 1
2 , and use |∇af±| ≤ |∇af | almost everywhere, to obtain��f (x)− fB(y,r)��≤ 2C 1

2

]
B(y,C0r)

|∇af (z)| K (x, z) dz (187)

+2C 1
2

]
B(y,C0r)

|∇af (z)|
+

1

|B (y, r)|

]
B(y,r)

K (w, z) dw
,
dz

≤ 2C 1
2

]
B(y,C0r)

|∇af (z)| K (x, z) dz + 2CC 1
2

r

|B (y, C0r)|

]
B(y,C0r)

|∇af (z)| dz,

since (97) implies

1

|B (y, r)|

]
B(y,r)

K (w, z) dw ≤ C r

|B (y, r)| , x ∈ B (y, r) , z ∈ B (y,C0r) .

This completes the proof of the lemma.

For use in the next subsection, we also record the following two standard proper-
ties of homogeneous spaces.

Lemma 55 Suppose {B (x, r)}x∈Ω,0<r<∞ is the family of balls in a homogeneous
space on Ω.

(a) There are positive constants C and D such that

|B (x, r)| ≤ C
�r
t

�D
|B (y, t)| , whenever B (x, r) ⊃ B (y, t) .

(b) If B (x, r) ∩B (y, t) 9= φ and r ≈ t, then |B (x, r)| ≈ |B (y, t)|.

4.3 The Sobolev and Poincaré inequalities
The following Poincaré inequality clearly implies both the Sobolev inequality (15)
and the Poincaré inequality (17) that are needed to invoke Theorem 6 or Theorem 7.

Proposition 56 Let {B (x, r)}x∈Ω,0<r<∞ be the family of quasimetric balls in a
symmetric general homogeneous space on Ω with quasimetric d, and suppose that
the standard subrepresentation inequality (186) holds. Then we have the Poincaré
inequality: there are positive constants C,C0 such that for sufficiently small δ > 0
and all y ∈ Ω and 0 < r < δ dist (y, ∂Ω),#

1

|B (y, r)|

]
B(y,r)

��f − fB(y,r)��q
$ 1

q

≤ Cr
#

1

|B (y, C0r)|

]
B(y,C0r)

|∇af |p
$ 1

p

,

for all f Lipschitz on B (y, C0r), and 1 < p < q <∞ where 1
q =

1
p −

1
D and D is the

doubling exponent in Lemma 55 (a).
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This result remains true for p = 1; see Remark 20 at the end of the proof.
Proof. There are several possible ways to proceed, and we have chosen to deduce
the Poincaré estimate from the results in [41] about integral operators of potential
type in a symmetric general homogeneous space. We recall the context. Let ρ(·, ·)
be a symmetric Lebesgue measurable quasimetric on an open subset Ω of Rn, and
let B (x, r) denote the ρ-ball with center x and radius r. Suppose that Lebesgue
measure satisfies the doubling condition

|B(x, 2r)| ≤ C |B (x, r)| , 0 < r <∞, (188)

with C independent of x and r. Thus the triple (Ω, ρ, dx) (where dx denotes Lebesgue
measure) is a general homogeneous space in the sense of Definition 27. Following [41],
we consider integral operators T : g → Tg which have the form

Tg (x) =

]
B0

f (z)K (x, z) dz, (189)

where B0 is a fixed ball (with respect to the given quasimetric ρ) and K (x, z) is a
nonnegative kernel. Given a kernel K and any ρ-quasimetric ball B with radius r (B),
let

φ (B) = sup{K (x, z) : x, z ∈ B, ρ (x, z) ≥ c1r (B)}, (190)

where c1 is a sufficiently small positive constant which depends only on the quasi-
metric constant of ρ (i.e., only on the analogue for ρ of the constant κ in (54)). In
fact, if we denote the quasimetric constant of ρ by κ, it is shown on p. 820 of [41]
that the choice

c1 =
1

9κ4
(191)

is possible. In this context, we will use the following special case of Theorem 3B of
[41] (by choosing the weights w and v there to have the constant values 1/ |B0| and
r (B0)

p
/ |B0|, respectively).

Lemma 57 Suppose that 1 < p < q <∞, T is given by (189) for a fixed ρ-ball B0,
φ is defined by (190), and κ is the quasimetric constant of ρ. Let B∗0 denote the ball
with the same center as B0 and radius 13κ5r (B0). If there is a constant C so that

φ (B) |B|
�
|B0|
|B|

� 1
p− 1

q

≤ Cr (B0) (192)

for all ρ-balls B ⊂ B∗0 , then�
1

|B0|

]
B0

|Tg (x)|q dx
�1/q

≤ CNr (B0)
�
1

|B0|

]
B0

|g (x)|p dx
�1/p

with cN depending only on p, q,κ and the constants in (188) and (192).

Remark 19 The results of [41] are derived with the extra assumption that annuli
B (x,R) \B (x, r) , 0 < r < R, are not empty. In fact, this assumption is not needed
for Theorem 3B of [41], as can be seen by going through its proof and observing that
since empty annuli contribute nothing to T , the only balls B which actually arise
in the proof are ones for which φ (B) is well-defined, i.e., ones which give rise to
nonempty annuli.
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In order to apply Lemma 57 to (186), we fix a ball B0 = B0 (x0, r0) with x0 ∈ Ω
and

0 < 13κ5r < r0 < δ dist (x0, ∂Ω) ,

and rewrite (186) in the form��f (x)− fB(y,r)�� ≤ CT �χB(y,Cr) |∇af (z)|� (x) + CA, x ∈ B (y, r) , (193)

for B (y, C0r) ⊂ B0, where A = r
|B(y,C0r)|

U
B(y,C0r)

|∇af (x)| dx and the operator T
is given by (189) with

K (x, z) = d (x, z)

|B (x, d (x, z))| .

(The doubling property of Lebesgue measure for quasimetric balls implies thatK (x, z) ≈
K(z, x), although we shall not use this fact.) We must now verify (192). To estimate
the functional φ (B) in (190), fix a ball B of radius r (B) with B ⊂ B∗0 , for B∗0 as in
Lemma 57, and let x and z lie in B with d (x, z) ≥ c1r (B) with c1 as in (190). Then

K (x, z) = d (x, z)

|B (x, d (x, z))| ≤
2κr (B)

|B (x, c1r (B))|
≤ C r (B)|B|

by Lemma 55 (b) applied to the balls B and B (x, c1r (B)). Taking the supremum
over such x and z yields

φ (B) ≤ C r (B)|B| .

We also have by Lemma 55 (a) that�
|B0|
|B|

� 1
p− 1

q

≤
�
|B∗0 |
|B|

� 1
p− 1

q

≤ C r (B0)
r (B)

since p−1 − q−1 = D−1 and B ⊂ B∗0 by hypothesis. Taking the product of these
estimates leads to (192) in the form

φ (B) |B|
�
|B0|
|B|

� 1
p− 1

q

≤ C2r (B0)

for all B ⊂ B∗0 .
Let B (y, r) be a ball with y ∈ Ω and 0 < r < δ dist (y, ∂Ω). Then if p > 1 and

p−1−q−1 = D−1, we obtain by combining (193) and Lemma 57 with B0 = B (y, C0r),
that #

1

|B (y, r)|

]
B(y,r)

��f (x)− fB(y,r)��q dx
$ 1

q

≤C
�

|B0|
|B (y, r)|

� 1
q
�
1

|B0|

]
B0

T
�
|∇af |χB0

�
(x)

q
dx

� 1
q

+ CA

≤C
�

|B0|
|B (y, r)|

� 1
q

CN r (B0)

�
1

|B0|

]
B0

|∇af (x)|p dx
� 1

p

+ CA

≤Cr
#

1

|B (y, Cr) |

]
B(y,Cr)

|∇af (x)|p dx
$ 1

p

,

since |B0| = |B (y, C0r)| ≤ C |B (y, r)| andA ≤ r
�

1
|B(y,C0r)|

U
B(y,C0r)

|∇af (x)|p dx
� 1
p

by Hölder’s inequality. This completes the proof of Proposition 56.
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Remark 20 Proposition 56 remains valid for p = 1. The argument in case p = 1 is
based on a weak-type analogue of Lemma 57, i.e., it is based on an estimate like the
one in Lemma 57 but with the Lorentz norm ||Tg/ |B0| ||Lq,∞(B0) on the left, and it
also uses a truncation argument involving the differential operator ∇a. For details,
we refer for example to Theorem 2 of [10], from which the desired estimate follows
as a special case.

4.4 Adapted vector fields and prehomogeneous spaces
The purpose of this subsection is to formulate and prove a general subellipticity the-
orem for a collection X of diagonal Lipschitz continuous vector fields, Theorem 61
below, that obtains subellipticity for X when X is adapted to a prehomogeneous
space in a natural way - see Definition 58 below. The key to obtaining the propor-
tional subrepresentation inequality (182) of Axiom 1 from Definition 58 is the lemma
below that controls the difference of two proportional averages of a function f by
an appropriately normalized average of ∇af . In order to state the lemma, we recall
some definitions.
Let a (x) = (1, a2 (x) , . . . , an (x)), x = (x1, . . . , xn), where the ai are nonnegative

on Ω. We assume that the ai satisfy the doubling condition in x1 uniformly in
x2, . . . , xn, i.e. that there is a constant Cd so that if I and J are one-dimensional
intervals with J ⊂ 5I, then]

J

ai (x1, x2, . . . , xn) dx1 ≤ Cd
]
I

ai (x1, x2, . . . , xn) dx1

for each i uniformly in x2, . . . , xn. We refer to the constant Cd as the doubling
constant of a. The blow-up factor 5 is present for technical convenience. We also
assume that ai (x1, x2, . . . , xn) is Lipschitz continuous in x2, . . . , xn uniformly in x1
with Lipschitz constant CL:

|ai (x1, x2, . . . , xn)− ai (x1, x32, . . . , x3n)| ≤ CL max
j=2,...,n

��xj − x3j�� .
Given i = 2, . . . , n, x ∈ Rn and t ∈ (−∞,∞), Ai (x, t) is defined by

Ai (x, t) =

] t

0

ai (x1 + s, x2, . . . , xn) ds,

provided the segment joining x and x+ (t, 0, ..., 0) lies in Ω. Note that Ai (x, t) has
the same sign as t.
The values Ai (x, r) are related to integral curves of the vector fields in the linear

span of
q

∂
∂x1
, a2

∂
∂x2
, . . . , an

∂
∂xn

r
. In order to guarantee the existence and unique-

ness of these integral curves, we assume that the ai are continuous in x as well as
Lipschitz continuous in x2, ..., xn (see e.g. Exercise 26 on page 171 and Exercise 28
on page 119 of [37]). In fact, for x ∈ Ω, u = (u2, . . . , un) ∈ Rn−1 and t in an open
interval containing 0, let γu (x, t) be the unique integral curve of the vector field
(1, u2a2, . . . , unan) with γu (x, 0) = x. Thus γu (x, t) satisfies

γ3u (x, t) = (1, u2a2 (γu (x, t)) , . . . , unan (γu (x, t))) and γu (x, 0) = x,

and so,
γu (x, t) = (x1 + t, γu2 (x, t) , . . . , γun (x, t)) where

γui (x, t) = xi + ui

] t

0

ai (γu (x, s)) ds, i = 2, . . . , n.
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When u = 0, γ0 (x, t) is simply the segment (x1 + t, x2, . . . , xn), and consequently

Ai (x, t) =

] t

0

ai (γ0 (x, s)) ds, i = 2, . . . , n.

In the next lemma, we will vary the initial points x of the curves γu (x, t) for special

fixed values of u to help estimate integral averages of functions. This technique, but
instead with x fixed and u varying, was first introduced by Franchi in [8].
Let B = {B (x, r) : x ∈ Ω, 0 < r <∞} be a prehomogeneous space on Ω and lethB be the collection of smallest closed rectangles

hB (x, r) = n\
k=1

[xk −Bk (x, r) , xk +Bk (x, r)]

containing B (x, r), as defined in (89). Let the a-gradient ∇af of a function f be
denoted as usual by

∇af (x) =
�

∂

∂x1
f (x) , a2 (x)

∂

∂x2
f (x) , . . . , an (x)

∂

∂xn
f (x)

�
.

Given α > 0 and F ⊂ hB (x, r), we say F is an α-proportional subset of hB (x, r) if
|F | ≥ α

��� hB (x, r)���. The key assumption in our lemma is the following definition.
Definition 58 A collection of vector fields X = {Xj (x)}nj=1 on Ω, where X1 =

∂
∂x1
,

X2 (x) = a2 (x)
∂
∂x2
, ... , Xn (x) = an (x)

∂
∂xn

, is said to be adapted on Ω to a
prehomogeneous space B on Ω (or vice versa, B is adapted on Ω to X ) if there is
δ > 0 such that

1. For all x ∈ Ω with 0 < r < δ dist (x, ∂Ω), we have

C−1 ≤ B1 (x, r)
r

≤ C,

2. For every 0 < α < 1 there is a positive constant ε such that for all balls
B (x, r) ∈ B with x ∈ Ω and 0 < r < δ dist (x, ∂Ω), there is an α-proportional
subset Ω of hB (x, r) satisfying

Aj (z, r) ≥ εBj (x, r) , for z ∈ Ω, 1 ≤ j ≤ n.

The next lemma is basic.

Lemma 59 Assume that ai is nonnegative and continuous for x in Ω, doubling in
x1 uniformly in x2, . . . , xn and Lipschitz continuous in x2, . . . , xn uniformly in x1.
Let X1 = ∂

∂x1
, X2 (x) = a2 (x)

∂
∂x2
, ... , Xn (x) = an (x)

∂
∂xn

and suppose that the
collection of vector fields X = {Xj (x)}nj=1 is adapted on Ω to a prehomogeneous

space B on Ω. Then for any Lipschitz continuous function f on hB (y, r) with y ∈ Ω
and 0 < r < δ dist (y, ∂Ω), and any α-proportional subsets G and H of hB (y, r) with
0 < α < 1, we have���� 1|G|

]
G

f (z) dz − 1

|H|

]
H

f (z) dz

���� ≤ C r��� hB (y, r)���
]
hB(y,r) |∇af (z)| dz,

where the constant C depends on Cc, CL, δ and α in Definition 58.
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Proof. We assume that y = 0 and 0 < r < δ dist (0, ∂Ω) are fixed, and let
Bj (r) = Bj (0, r). We rearrange variables so that

Bj (r) ≤ Bj−1 (r) for 2 ≤ j ≤ n. (194)

Fix α with 0 < α < 1. By condition 2 of Definition 58, there exists ε > 0 depending

only on α, and a set Ω ⊂ hB (y, r) with |Ω| ≥ α
��� hB (y, r)��� such that

Aj (x, r) =

] r

0

aj (x1 + t, x2, . . . , xn) dt ≥ εBj (r) if (x1, x2, . . . , xn)∈ Ω (195)

for j = 1, 2, . . . , n. By comparing each of the integral averages of f over G and over
H to the average of f over Ω, we may suppose that H = Ω. Thus the estimate in
(195) holds if (x1, x2, . . . , xn) ∈ H.
Given points P ∈ hB (0, r) and Q ∈ H = Ω, we denote

P = (p1, p2, . . . , pn), Q = (q1, q2, . . . , qn),

and define points {Pk}n+1k=1 by P1 = P,Pn+1 = Q and

Pk = (q1, q2, . . . , qk−1, pk, . . . , pn), k = 2, . . . , n.

Then

|f (P )− f (Q)|≤
n[
k=1

|f (Pk)− f (Pk+1)|

= |f (p1, p2, . . . , pn)− f (q1, p2, . . . , pn)|

+
n[
k=2

|f (q1, q2, . . . , qk−1, pk, . . . , pn)− f (q1, q2, . . . , qk, pk+1, . . . , pn)| .

We will estimate each term |f (Pk)− f (Pk+1)| separately. In the simple case k = 1,
we have

|f (P1)− f (P2)| ≤
] B1(r)

−B1(r)

���� ∂f∂x1 (t, p2, . . . , pn)
���� dt,

since p1, q1 ∈ [−B1 (r) , B1 (r)].
Now let 2 ≤ k ≤ n and consider the two integral curves emanating from Pk and

Pk+1 given by
γ0...0uk0...0 (Pk, t) =�

q1 + t, q2, . . . , qk−1, pk + uk
] t

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds, pk+1, . . . , pn

�
,

and
γ0...0uk0...0 (Pk+1, t) =�

q1 + t, q2, . . . , qk−1, qk + uk
] t

0

ak
�
γ0...0uk0...0 (Pk+1, s)

�
ds, pk+1, . . . , pn

�
.

We claim that

min

�] r

0

ak
�
γ0...0uk0...0 (Pk, t)

�
dt,

] r

0

ak
�
γ0...0uk0...0 (Pk+1, t)

�
dt

�
>

ε

4
Bk (r)

(196)
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for 2 ≤ k ≤ n provided

2CLr |uk| < 1 and 4CLr (n− 1) < ε. (197)

To prove this, first note that since ak (x) is Lipschitz continuous in x2, ..., xn,] r

0

ak
�
γ0...0uk0...0 (Pk, t)

�
dt =

] r

0

ak

�
q1 + t, q2, . . . , qk−1, pk + uk

] t

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds, pk+1, . . . , pn

�
dt

differs in absolute value from] r

0

ak(q1 + t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt

by less than

rCL|uk|
] r

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds ≤ 1

2

] r

0

ak
�
γ0...0uk0...0 (Pk, t)

�
dt

provided 2CLr|uk| < 1. Hence, if 2CLr|uk| < 1, then] r

0

ak
�
γ0...0uk0...0 (Pk, t)

�
dt >

1

2

] r

0

ak(q1 + t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt.

(198)
Next, due to the sizes of the edgelengths of hB(0, r) and the fact that ak (x) is Lipschitz
continuous in x2, ..., xn, the integral] r

0

ak(q1 + t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt

differs in absolute value from] r

0

ak(q1 + t, q2, . . . , qk−1, qk, qk+1, . . . , qn) dt = Ak(Q, r)

by at most

rCL (2Bk (r) + . . .+ 2Bn (r)) ≤ 2rCL(n− 1)Bk (r) ≤
ε

2
Bk (r)

due to the ordering (194) and the restrictions (197) on r. But Ak(Q, r) ≥ εBk (r) by
(195) since Q ∈ H = Ω. Hence,] r

0

ak(q1 + t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt >
ε

2
Bk (r)

for such r, ε. The desired estimate for the first term in (196) follows by combining
estimates. To estimate the second term, we replace Pk by Pk+1 and pk by qk in the
argument above. This completes the proof of (196) for k = 2, . . . , n.
By doubling of ak in x1 there is a constant c with 0 < c < 1 such that] C−1r

0

ak(q1+t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt ≥ c
] r

0

ak(q1+t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt
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where C is as in condition 1 of Definition 58. Combining the last two inequalities
with C−1r ≤ B1 (r) from condition 1 of Definition 58, we obtain] B1(r)

0

ak(q1 + t, q2, . . . , qk−1, pk, pk+1, . . . , pn) dt >
cε

2
Bk (r) . (199)

Hence combining (198) and (199), along with a similar argument for Pk+1 in place
of Pk, we obtain

min

+] B1(r)

0

ak
�
γ0...0uk0...0 (Pk, t)

�
dt,

] B1(r)

0

ak
�
γ0...0uk0...0 (Pk+1, t)

�
dt

,
>
cε

4
Bk (r)

(200)
We now make a fixed choice of uk > 0 which is independent of k, P,Q and the
sequence {Pk}, namely let

uk =
8

cε
, 2 ≤ k ≤ n.

Then, multiplying (200) by uk, we obtain

min

+
uk

] B1(r)

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds, (201)

uk

] B1(r)

0

ak
�
γ0...0uk0...0 (Pk+1, s)

�
ds

,
>uk

cε

4
Bk (r) = 2Bk (r)

provided (see (197)) 16CLr (n− 1) < cε, i.e., provided r is sufficiently small. Note
that the term 2Bk (r) on the right side of (201) is the sidelength of hB(0, r) in the
direction of the xk-axis. Thus (201) expresses the fact that by the time t = B1 (0, r),
both of the curves γ0...0uk0...0 (Pk, t) and γ0...0uk0...0 (Pk+1, t) have escaped out the
”kth side” of hB(0, r) due to growth in their kth coordinates.
The argument is now slightly different depending on which of pk or qk is smaller.

Suppose first that pk < qk. With uk chosen as above, (201) then implies that the
curves

γ0...0uk0...0 (Pk, t) and γ0 (Pk+1, t)

must intersect for a value t = tk depending on Pk with 0 < tk < B1 (r):

γ0...0uk0...0(Pk, tk) = γ0(Pk+1, tk) = (q1 + tk, q2, . . . , qk, pk+1, . . . , pn).

This follows from the forms of the two curves since the term 2Bk (r) in (201) is the
kth sidelength of hB(0, r). Recall that uk = 8

cε is positive and independent of k, Pk
and Pk+1. In fact, the curves intersect for the value of tk with

pk + uk

] tk

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds = qk.

Thus,
f
�
γ0...0uk0...0(Pk, tk)

�
= f (γ0(Pk+1, tk)) ,
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and therefore,

|f (Pk)− f (Pk+1)|≤
��f (Pk)− f �γ0...0uk0...0(Pk, tk)���
+ |f (γ0(Pk+1, tk))− f (Pk+1)|

=
��f �γ0...0uk0...0(Pk, 0)�− f �γ0...0uk0...0(Pk, tk)���
+ |f (γ0(Pk+1, tk))− f (γ0(Pk+1, 0))|

=

����] tk

0

d

dt
f
�
γ0...0uk0...0 (Pk, t)

�
dt

����
+

����] tk

0

d

dt
f (γ0 (Pk+1, t)) dt

���� ,
which is dominated by] tk

0

���� ∂f∂x1 (γ0...0uk0...0 (Pk, t))
���� dt

+uk

] tk

0

���� ∂f∂xk (γ0...0uk0...0 (Pk, t)) ak(γ0...0uk0...0 (Pk, t))
���� dt

+

] tk

0

���� ∂f∂x1 (γ0 (Pk+1, t))
���� dt.

Assume for the moment that q lies in the left half of hB (0, r), i.e. q1 ∈ [−B1 (0, r) , 0].
Then by construction and the fact that G and H are subsets of the rectangle hB (0, r),
the parts of both curves corresponding to t values with 0 ≤ t ≤ tk lie in the sethB (0, r). On the other hand, if q lies in the right half of hB (0, r), i.e. q1 ∈ [0, B1 (0, r)],
then run the curve backward instead. Since (200) also holds with integration over
the interval [−B1 (0, r) , 0] instead of [0, B1 (0, r)], we conclude that the backward
curve then lies in the set hB (0, r) as well. Hence, letting χ = χ hB(0,r) denote the
characteristic function of hB (0, r), we obtain for 2 ≤ k ≤ n,

|f (Pk)− f (Pk+1)| (202)

≤
�
1 +

8

cε

�] B1(r)

0

��∇af �γ0...0uk0...0 (Pk, t)��� χ �γ0...0uk0...0 (Pk, t)� dt
+

] B1(r)

0

|∇af (γ0 (Pk+1, t))| χ (γ0 (Pk+1, t)) dt.

If on the other hand qk < pk, then the integral curves

γ0 (Pk, t) and γ0...0uk0...0 (Pk+1, t)

intersect for some tk with 0 < tk < B1 (0, r), namely for the value of tk with

qk + uk

] tk

0

ak
�
γ0...0uk0...0 (Pk+1, s)

�
ds = pk,

where uk is the same as before. Again, both curves lie in hB (0, r) for 0 ≤ t ≤ tk (by
running the curve forward if q lies in the left half of hB (0, r), and backward if q lies
in the right half of hB (0, r)), and as above we obtain

|f (Pk)− f (Pk+1)| ≤
] B1(r)

0

|∇af (γ0 (Pk, t))| χ (γ0 (Pk, t)) dt (203)
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+

�
1 +

8

cε

�] B1(r)

0

��∇af �γ0...0uk0...0 (Pk+1, t)��� χ �γ0...0uk0...0 (Pk+1, t)� dt.
In any case, |f (Pk)− f (Pk+1)| is bounded by the sum of four terms, two from

(202) and two from (203). Thus,���� 1|G|
]
G

f (z) dz − 1

|H|

]
H

f (z) dz

���� ≤ 1

|G| |H|

]
H

]
G

|f (P )− f (Q) | dQdP

≤
�
1 +

8

cε

� n[
k=1

1

|G| |H|

]
H

]
G

+] B1(r)

0

Ek (t, P,Q) dt

,
dQdP,

where for 2 ≤ k ≤ n,

Ek (t, P,Q) =
��∇af �γ0...0uk0...0 (Pk, t)��� χ �γ0...0uk0...0 (Pk, t)� (204)

+ |∇af (γ0 (Pk+1, t))| χ (γ0 (Pk+1, t))
+ |∇af (γ0 (Pk, t))| χ (γ0 (Pk, t))
+
��∇af �γ0...0uk0...0 (Pk+1, t)��� χ �γ0...0uk0...0 (Pk+1, t)� ,

and for k = 1,
E1 (t, P,Q) = |∇af (γ0 (P, t))| χ (γ0 (P, t)) . (205)

Each of the corresponding four integral expressions in (204), as well as the correspond-
ing integral expression in (205), can be estimated similarly, and we shall consider only
the first one in (204) in detail.
For 2 ≤ k ≤ n, we have

1

|G| |H|

]
H

]
G

+] B1(r)

0

��∇af �γ0...0uk0...0 (Pk, t)��� (206)

× χ
�
γ0...0uk0...0 (Pk, t)

�
dt
�
dQdP

≤ 1

α2
Tn
j=1 [2Bj (r)]

2

] B1(r)

−B1(r)
· · ·
] Bn(r)

−Bn(r)

×
] B1(r)

−B1(r)

· · ·
] Bn(r)

−Bn(r)

] B1(r)

0

|∇af |χ dt dqn . . . dq1dpn . . . dp1,

where we have used the notation

|∇af |χ =����∇af �q1 + t, q2, . . . , qk−1, pk + uk ] t

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds, pk+1, . . . pn

����� χ(. . .),
and χ(. . .) denotes χ evaluated at the same point as ∇af . Note that this expression
is independent of p1, ..., pk−1 and qk, ..., qn. Recall that uk = 8

cε is a fixed constant
independent of k. Performing the integration in qk, . . . , qn and p1, . . . , pk−1 shows
that (206) is at most

2n

22nα2
Tn
1 Bj (r)

2Bk (r) · · ·Bn (r) B1 (r)B2 (r) · · ·Bk−1 (r)
] Bk(r)

−Bk(r)

· · ·
] Bn(r)

−Bn(r)
×

] B1(r)

−B1(r)
· · ·
] Bk−1(r)

−Bk−1(r)

] r

0

|∇af |χ dt dqk−1 . . . dq1dpn . . . dpk
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≤ 1

α2
Tn
1 2Bj (r)

] B1(r)

−B1(r)

]
hB(0,r) |∇af (w)|

���� ∂(w1, . . . , wn)

∂(t, q2, . . . , qk−1, pk, . . . , pn)

����−1 dw1 . . . dwndq1,
(207)

where, for fixed q1,

w= (w1, . . . , wn)

=

�
q1 + t, q2, . . . , qk−1, pk + uk

] t

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds, pk+1, . . . pn

�
.

We compute that
∂(w1, . . . , wn)

∂(t, q2, . . . , qk−1, pk, . . . , pn)

is a determinant whose kth row is the vector ∇wk, whose diagonal entries other than
the one in the kth row are 1, and whose remaining entries are all 0. Consequently,

∂(w1, . . . , wn)

∂(t, q2, . . . , qk−1, pk, . . . , pn)
=

∂wk
∂pk

= 1 +
∂

∂pk

�
uk

] t

0

ak
�
γ0...0uk0...0 (Pk, s)

�
ds

�
,

(208)
for 2 ≤ k ≤ n.
We claim that for 2 ≤ k ≤ n, the function

Φk (x, t) = uk

] t

0

ak
�
γ0...0uk0...0 (x, s)

�
ds

is Lipschitz continuous in x2, ..., xn with Lipschitz constant at most CL |ukt| (1− CL |ukt|)−1.
We have from the fundamental theorem of calculus and the definition of integral curve
that

γ0...0uk0...0 (x, s) =

�
x1 + s, x2, ..., xk−1, xk + uk

] s

0

ak
�
γ0...0uk0...0 (x,σ)

�
dσ, xk+1, ..., xn

�
= (x1 + s, x2, ..., xk−1, xk +Φk (x, s) , xk+1, ..., xn) .

Thus if s > 0, x = (x1, x2, ..., xn) and x3 = (x1, x32, ..., x3n), then since ak is Lipschitz
continuous in x2, ..., xn, we have

|uk|
] t

0

��ak �γ0...0uk0...0 (x, s)�− ak �γ0...0uk0...0 (x3, s)��� ds
≤ |uk|

] t

0

CLmax
�
|x2 − x32| , ...,

��xk−1 − x3k−1�� , |Φk (x, s)− Φk (x3, s)| , ��xk+1 − x3k+1�� , ..., |xn − x3n|� ds
≤ |uk|

] t

0

CL {|x− x3|+ |Φk (x, s)− Φk (x3, s)|} ds

≤ |uk|
] t

0

CL

�
|x− x3|+ |uk|

] s

0

��ak �γ0...0uk0...0 (x,σ)�− ak �γ0...0uk0...0 (x3,σ)��� dσ� ds
≤ |uk|CLt

�
|x− x3|+ |uk|

] t

0

��ak �γ0...0uk0...0 (x,σ)�− ak �γ0...0uk0...0 (x3,σ)��� dσ � .
Absorbing the second term on the right gives

|uk|
] t

0

��ak �γ0...0uk0...0 (x, s)�− ak �γ0...0uk0...0(x3, s)��� ds ≤ |uk|CLt
1− |uk|CLt

|x− x3|,
(209)
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which proves the claim since |Φk (x, t)− Φk (x3, t)| is bounded by the expression on
the left side of (209). If |ukCLt| ≤ 1/3, then |uk|CLt

1−|uk|CLt ≤
1
2 , and thus the function

Φk (x, t) has Lipschitz constant at most 1
2 in the variables x2, ..., xn. It then follows

from (208) that ���� ∂(w1, . . . , wn)

∂(t, q2, . . . , qk−1, pk, . . . , pn)

���� ≥ 12 . (210)

The restriction |ukCLt| ≤ 1/3 is satisfied by assuming that 24CLCr ≤ cε, since
0 ≤ t ≤ B1 (r) ≤ Cr by Definition 58 and uk = 8

cε . Similar arguments apply to the
other three terms in (204) and the single term in (205). For example, to treat the
last term in (204), we replace pk by qk and Pk by Pk+1 at the appropriate places
above and perform the integrations in qk+1, . . . , qn and p1, p2, . . . , pk, with remaining
integrations in t, q1, q2, . . . , qk, pk+1, . . . , pn. The other two terms in (204), along with
the term in (205), are simpler since uk is replaced by 0 in them.
Using the estimate (210) on the right side of (207), and then integrating in q1,

we obtain that (206) is at most

2B1 (r)

α2
Tn
j=1 2Bj (r)

]
hB(0,r) |∇af (w)| 2dw1 . . . dwn.

Consequently, by combining estimates (recall that there are 4 terms in (204) and
that we must sum over k for k = 1, 2, . . . , n), we obtain���� 1|G|

]
G

f (z) dz − 1

|H|

]
H

f (z) dz

����
≤
�
1 +

8

cε

�
8n

α2
2B1 (r)Tn
j=1 2Bj (r)

]
hB(0,r) |∇af (w)| dw.

This completes the proof of the basic Lemma 59 since B1 (r) ≈ r by Definition 58.
4.4.1 The proportional subrepresentation inequality

We can now obtain the proportional subrepresentation inequality (182) from Lemma
59 if we assume in addition that the family B is Ω-locally equivalent to the family hB
in the sense of subsection 2.3, i.e.

B
�
x,C−1r

�
⊂ hB (x, r) ⊂ B (x,Cr) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) . (211)

Note that we actually have B (x, r) ⊂ hB (x, r) by definition of hB (x, r).
Proposition 60 Assume that ai is nonnegative and continuous for x ∈ Ω, doubling
in x1 uniformly in x2, . . . , xn and Lipschitz continuous in x2, . . . , xn uniformly in
x1. Let X1 = ∂

∂x1
, X2 (x) = a2 (x)

∂
∂x2
, ... , Xn (x) = an (x)

∂
∂xn

and suppose that
the collection of vector fields X = {Xj (x)}nj=1 is adapted on Ω to a prehomogeneous
space B on Ω, and that B is Ω-locally equivalent to the family hB in (89). Then the
proportional subrepresentation inequality (182) of Axiom 1 holds.

Proof. Since the families B and hB are Ω-locally equivalent, there is K ≥ 1 such thathB (x, r) ⊂ B (x,Kr) , 0 < r < δ dist (x, ∂Ω) . (212)

Recall that the rectangles hB (x, r) are given by
hB (x, r) = I1 (x, r)× n\

k=2

[xk −Bk (x, r) , xk +Bk (x, r)] ,
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where I1 (x, r) is the interval

I1 (x, r) = [x1 −B1 (x, r) , x1 +B1 (x, r)] .

From condition 1 of the assumption that the vector fields X = {Xj (x)}nj=1 are
adapted to B, we obtain for some α > 0,

α <
B1 (x, r)

r
<
1

α
, 0 < r < δ dist (x, ∂Ω) . (213)

We decrease α if necessary to achieve α ≤ c where c is the constant in the weak
monotonicity condition (60).
We first prove (182) with C = 1 for x ∈ B (y,R) in the special case x = y, and

we will further assume without loss of generality that x = y = 0 and 0 < R <
δ dist (0, ∂Ω) is fixed. Let τ ∈ (0, 1) to be fixed near the end of the proof. Let
τm = τmR for m = 1, 2, ... and define the sequence of points ym = (τm, 0, ..., 0),
m ≥ 1. Note that ym tends to 0 = (0, ..., 0) as m→∞. Let γ be the constant in the
engulfing condition (56). Consider the sets, which we refer to as preballs,

Bm = B (y
m,α (1− τ) τm) , B

∗
m = B

�
ym,Kα−1γ (1− τ) τm

�
,

and their corresponding smallest closed containing rectanglesjBm = hB (ym,α (1− τ) τm) ,jB∗m = hB �ym,Kα−1γ (1− τ) τm
�
,

for m ≥ 1. We claim the following two properties hold with τ ≤ 1− α2

2Kγ :+jBm ∪Bm+1 ⊂jB∗m, m ≥ 1S∞
m=M χjB∗m ≤ Cχ hB(0,C3τMR), M ≥ 1 , (214)

with C = 1 + ln
�
1
3

�
/ ln

�
1− α2

2Kγ

�
and C 3 = K2γ2

α .

NowjBm ⊂jB∗m by weak monotonicity since α ≤ c < 1 and K, γ ≥ 1 imply that
Bm ⊂ B∗m. To see that Bm+1 ⊂jB∗m, we first note that by (213) with r replaced by
α−1 (1− τ) τm,

τm+1 = ττm ∈ [τm − (1− τ) τm, τm + (1− τ) τm] ⊂ I1
�
ym,α−1 (1− τ) τm

�
and so ym+1 ∈ hB �ym,α−1 (1− τ) τm

�
. From (212) we then obtain

ym+1 ∈ B
�
ym,Kα−1 (1− τ) τm

�
.

Thus the engulfing property (56) of the preballs yields

B
�
ym+1,Kα−1 (1− τ) τm

�
⊂ B

�
ym, γKα−1 (1− τ) τm

�
= B∗m.

Using α ≤ c < 1 and the weak monotonicity property (60) we have

Bm+1 = B
�
ym+1,α (1− τ) τm+1

�
⊂ B

�
ym+1,Kα−1 (1− τ) τm

�
.

Combining these containments, we obtain Bm+1 ⊂ B∗m and so Bm+1 ⊂ jB∗m, thus
proving the first assertion in (214).
For the remaining assertion in (214), we first claim that the intervals�

I1
�
ym,Kα−1γ (1− τ) τm

��∞
m=1
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have finite overlap N where N is the least integer greater than ln
�
1
3

�
/ ln

�
1− α2

2Kγ

�
.

Indeed, from (213) we have

I1
�
ym+N ,Kα−1γ (1− τ) τm+N

�
⊂
�
τm+N −Kα−2γ (1− τ) τm+N , τm+N +Kα−2γ (1− τ) τm+N

�
.

Thus we will have

I1
�
ym+N ,Kα−1γ (1− τ) τm+N

�
∩ I1

�
ym,Kα−1γ (1− τ) τm

�
= φ

for all m ≥ 1 if

τm+N +Kα−2γ (1− τ) τm+N < τm −Kα−2γ (1− τ) τm, m ≥ 1,

which in turn holds provided

τN
�
1 +Kα−2γ (1− τ)

�
< 1−Kα−2γ (1− τ) .

This latter inequality can be achieved by choosing τ ≤ 1− α2

2Kγ and then N so large
that

τN ≤
�
1− α2

2Kγ

�N
<
1

3
,

proving our claim about the intervals I1.
Second, we observe that

τm = τmR ∈ [−KγτmR,KγτmR] ⊂ I1
�
0,Kα−1γτmR

�
shows that ym ∈ hB �0,Kα−1γτmR

�
. Thus by (212), ym ∈ B

�
0,K2α−1γτmR

�
, and

then by engulfing, B
�
ym,K2α−1γτm

�
⊂ B

�
0,K2α−1γ2τmR

�
(note the square on

the last γ). Hence

jB∗m = hB �ym,Kα−1γ (1− τ) τm
�
⊂ hB �0,Kα−1γ2τmR

�
, m ≥ 1,

and this completes the proof of (214).
Now let f be Lipschitz continuous on hB (0, C 3R) and vanish on a subset Ω of

B (0, R) satisfying |Ω| ≥ β |B (0, R)|. By the continuity of f at 0 we have

|f (0)|=

������ limm→∞
1���jBm���

]
jBm f (z) dz

������
≤

������ 1���jBM ���
]
jBM f (z) dz

������+
∞[

m=M

������ 1���Bm+1���
]
Bm+1

f (z) dz − 1���jBm���
]
jBm

f (z) dz

������
for all M ≥ 1. Let M be the least positive integer such that K2α−1γ2τM ≤ 1, thus
ensuring that jB∗M ⊂ hB (0, R) for all m ≥ M . It is easy to see that there is then
a positive constant δ such that jBM is a δ-proportional subset of hB (0, R). Indeed,jBM ⊂jB∗M by (214) and then jB∗M ⊂ hB (0, R) by the choice of M as indicated above.
The proportional assertion follows from BM ⊂ jBM , (212) and the fact that the
”radius” of BM is comparable to R, as M has been fixed. Also, there is a constant
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c > 0 such that Ω is a cβ-proportional subset of hB (0, R). Now apply Lemma 59 to
the preball B (0, R) with α = min {cβ, δ} and G =jBM ,H = Ω to obtain������ 1���jBM ���

]
jBM f (z) dz

������=
������ 1���jBM ���

]
jBM

f (z) dz − 1

|Ω|

]
Ω

f (z) dz

������
≤C R��� hB (0, R)���

]
hB(0,R) |∇af (z)| dz.

It is again easy to see that there is a positive constant δ such that both jBm and
Bm+1 are δ-proportional subsets of jB∗m for all m ≥ 1. Using (214) we can apply

Lemma 59 to the preball B∗m with α = δ and G = Bm+1,H =jBm to obtain������ 1���Bm+1���
]
Bm+1

f (z) dz − 1���jBm���
]
jBm f (z) dz

������ ≤ C γKα−1 (1− τ) τm���jB∗m���
]
jB∗m |∇af (z)| dz,

for all m ≥ 1. Adding these estimates yields

|f (0)| ≤ C
]
|∇af (z)|


∞[

m=M

τm���jB∗m���χjB∗m (z)
 dz + C R��� hB (0, R)���

]
hB(0,R) |∇af (z)| dz.

We now claim that

∞[
m=M

τm���jB∗m���χjB∗m (z) ≤ Cχ hB(0,R) (z)
d (0, z)

|B (0, d (0, z))| , z ∈ hB (0, R) ,
where d (0, z) = inf {r > 0 : z ∈ B (0, r)}. Indeed, we will momentarily check using
engulfing and (212) that d (0, z) ≈ τm for z ∈ jB∗m, and that ���jB∗m��� ≈ ��� hB (0, τm)���,
m ≥ 1. With this done, and since there are at most N rectanglesjB∗m that contain a
fixed point z, and sincejB∗m ⊂ hB (0, R) for m ≥M , we then have

∞[
m=M

τm���jB∗m���χjB∗m (z) ≤ CNχ hB(0,R) (z) d (0, z)��� hB (0, d (0, z))���
as required.

So it remains to show d (0, z) ≈ τm for z ∈jB∗m, and ���jB∗m��� ≈ ��� hB (0, τm)���, m ≥ 1.
Now τm ≈ B1 (0, τm) by condition 1 of Definition 58, and so there is a constant
C ≥ 1 such that

ym = (τm, 0, ..., 0) ∈ hB (0, Cτm) \ hB�0, 1
C
τm

�
.

By (212), we then have for a larger constant C 3,

ym ∈ B (0, C 3τm) \B
�
0,
1

C 3
τm

�
,
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which establishes that d (0, ym) ≈ τm with constant of equivalence independent of
m ≥ 1. Now take z ∈ jB∗m. Now we recall Remark 7 which shows that d is a
quasimetric. Then by what we just proved and (54), we have

τm ≤Cd (0, ym) ≤ Cκ [d (0, z) + d (ym, z)]
≤Cκ [d (0, z) + C (1− τ) τm] .

If we now choose 1 − τ sufficiently small, we can absorb the second term on the
right side to obtain that τm ≤ Cd (0, z). Conversely, we first recall from Remark
8 that setting z = x in (54) yields d (x, y) ≤ κd (y, x). Together with d (ym, z) ≤
C (1− τ) τm proved above, we thus have

d (0, z)≤ κ [d (0, ym) + d (z, ym)]

≤ κ [d (0, ym) + κd (ym, z)]

≤ κ [Cτm + κC (1− τ) τm]

≤C3τm,

and this completes our first assertion that d (0, z) ≈ τm for z ∈jB∗m.
Next let us show that

���jB∗m��� ≈ ��� hB (0, τm)��� for m ≥ 1. It is enough to show that
|B∗m| ≈ |B (0, τm)| because of doubling and (212). If ξ ∈ B (0, τm), then d (0, ξ) < τm
and so

d (ym, ξ)≤ κ [d (ym, 0) + d (ξ, 0)]

≤ κ2 [d (0, ym) + d (0, ξ)]

≤Cτm,

by what we have already shown. Since τ is now fixed, it follows that ξ belongs to a
fixed enlargement B∗∗m of B∗m. Thus B (0, τm) ⊂ B∗∗m , and we obtain |B (0, τm)| ≤
C |B∗m| by doubling. The proof of the opposite inequality is similar.
This completes the proof of (182) with C = 1 in the case x = y. From this,

together with the engulfing property of the preballs, it follows immediately that
(182) holds for arbitrary x ∈ B (y,R) with a large blowup constant C, and the proof
of Proposition 60 is now complete.

Remark 21 Using the fact that the flag and noninterference balls are rectangles, it
is possible to show that in these cases, the proportional subresentation formula (182)
holds with the blowup constant C = 1. The idea is to partition the rectangle into 2n

quadrants, and then, depending on which quadrant the point x lies in, to choose the
shooting parameters u so that the integral curves emanating from x always remain in
the rectangle. The details are left to the interested reader. See also [27] where geo-
desics are used to obtain the standard subrepresentation inequality (186) with blowup
constant C0 = 1 in certain special cases. We conjecture that in Proposition 60, we
can in similar fashion obtain the proportional subrepresentation inequality (182) with
blowup constant C = 1 by taking the centers ym of sufficiently small preballs Bm in
the above argument to lie on an appropropriate integral curve through x.

We can now state and prove a general theorem on subellipticity of diagonal Lip-
schitz vector fields. Axiom 1 and Lemma 53 play a key role in the proof.

Theorem 61 Assume that ai is nonnegative and continuous for x ∈ Ω, doubling in
x1 uniformly in x2, . . . , xn and Lipschitz continuous in x2, . . . , xn uniformly in x1.
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Let X1 = ∂
∂x1
, X2 (x) = a2 (x)

∂
∂x2
, ... , Xn (x) = an (x)

∂
∂xn

and suppose that the
collection of vector fields X = {Xj (x)}nj=1 is adapted on Ω to a prehomogeneous

space B = (Ω,B) on Ω, and B that is Ω-locally equivalent to the family hB as in (211).
Let D be a doubling exponent for the family B. Finally we either suppose that the
”accumulating sequence of Lipschitz cutoff functions” condition (20) holds for some
p > max {D, 4}, or we suppose that B is Ω-locally equivalent to the family of subunit
balls K. Then X is Lq-subelliptic in Ω for all q > D.

Proof. Proposition 60 shows that the proportional subrepresentation inequality
(182) of Axiom 1 holds for the prehomogeneous space B. Conditions (179) and (180)
of Axiom 1 hold since B and hB are Ω-locally equivalent. Thus Axiom 1 holds for X
and the prehomogeneous space B. Lemma 53 then shows that the corresponding sym-
metric general homogeneous space B∗ = (Ω,B∗) where B∗ = {B∗ (x, r)}x∈Ω,0<r<∞,
also satisfies Axiom 1 relative to X . We will now verify the hypotheses of Theorem
6 applied to the general homogeneous space B∗ and the quadratic form Q (x, ξ) =Sn

j=1

�
aj (x) ξj

�2
arising from the collection of vector fields X under the assumption

that (20) holds for some p > max {D, 4}. The doubling condition (13) is obvious. The
convex hull equivalence (179) from Axiom 1 together with Remark 2 then shows that
the containment condition (11) holds. Proposition 56 and Lemma 54 show that the
Sobolev and Poincaré inequalities (15) and (17) hold. The ”accumulating sequence
of Lipschitz cutoff functions” condition (20) is obviously inherited by equivalent fam-
ilies, as is a doubling exponent, and Theorem 6 now applies to complete the proof of
Theorem 61 under the assumption that (20) holds for some p > max {D, 4} since

Q = max {Q∗, 2σ3} = max {Q∗,D} = D.

We appeal instead to Theorem 7 in the case that B is Ω-locally equivalent to K, since
then Axiom 1 holds for X and K, the pair (Ω,K) is a symmetric general homogeneous
space, and the hypotheses of Theorem 7 are seen to hold just as above.

4.5 The reduction of the proofs
Using Theorem 61 and Proposition 36, we now reduce the proofs of Theorems 13
and 15 to proving that the flag and noninterference balls satisfy the size-limiting
condition (91) and form a δ-local prehomogeneous space and a δ-local homogeneous
space respectively that is adapted to the collection of vector fields X = {Xj}nj=1 as in
Definition 58. As noted at the beginning of subsubsection 1.2.1 of the introduction,
we may assume, without loss of generality, that a1 ≡ 1 so that X1 = ∂

∂x1
.

We begin with the proof of Theorem 13, assuming in addition that the flag balls
B satisfy (91) and form a δ-local prehomogeneous space B = (Ω,B) adapted to X .
Since the conclusion of Theorem 13 is local in nature, we may fix x0 ∈ Ω and restrict
attention to the δ0-local prehomogeneous space B0 that is induced on Ω0 by B as in
Proposition 33. Since B0 is extendible, and continues to be adapted to X , we may
as well assume that B = (Ω,B) itself is a prehomogeneous space adapted to X .
By Proposition 36, the flag balls are Ω-locally equivalent to the subunit balls

K (x, r). Indeed, condition (91) has been assumed and condition (90) of Proposition
36 holds with Cy,r = fB(y,r) by Lemma 54 and Proposition 60. The reverse Hölder
and Lipschitz requirements on the vector fields in Proposition 36 follow from the hy-
potheses of Theorem 13. The flag balls are rectangles and so B is Ω-locally equivalent
to hB, and the remaining hypotheses of Theorem 61 are explicitly assumed in Theorem
13. Thus Theorem 61 applies to complete the proof of Theorem 13, assuming the flag
balls B satisfy (91) and form a δ-local prehomogeneous space B = (Ω,B) adapted to
X .
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We turn now to the proof of Theorem 15, assuming in addition that the non-
interference balls A satisfy (91) and form a δ-local homogeneous space A = (Ω,A)
adapted to X . Again, Proposition 33 and Proposition 36 apply, and we conclude
that we may assume that A itself is a homogeneous space adapted to X , and that the
noninterference balls A (x, r) are Ω-locally equivalent to the subunit balls K (x, r).
For this, recall that the hypotheses of Theorem 15 include the continuity of the aj ,
as well as the reverse Hölder condition in the x1 variable, uniformly in the other vari-
ables. The noninterference balls are rectangles and so A is Ω-locally equivalent to hA,
and the remaining hypotheses of Theorem 61 are explicitly assumed in Theorem 15.
Thus Theorem 61 applies to complete the proof of Theorem 15, assuming the non-
interference balls A satisfy (91) and form a δ-local homogeneous space A = (Ω,A)
adapted to X .
4.5.1 The sharper technical case

In this subsubsection, we prove the sharper sufficient conditions for subellipticity of
vector fields in Theorems 18 and 19 under the additional assumption that the flag
and noninterference balls form a δ-local prehomogeneous and homogeneous space
respectively adapted to X . We suppose as well that the noninterference ballsA satisfy
the size-limiting condition (91), and that the flag balls B satisfy the reverse doubling
property (215). As above, Proposition 33 shows that we may assume that the flag and
noninterference balls form a prehomogeneous and homogeneous space respectively.
We will not demonstrate the equivalence of our family of balls with the subunit balls
and in fact, if the coefficients aj fail to be reverse Hölder of infinite order in the x1
variable, then the noninterference balls A are not equivalent with the subunit balls
K by Proposition 77. This requires that we establish the ”accumulating sequence
of Lipschitz cutoff functions” condition (20) directly for the flag and noninterference
balls, assuming that the aj satisfy a reverse Hölder condition of order p <∞ in the
x1 variable. We first consider the noninterference balls A.
Proposition 62 Let 1 < p ≤ ∞. The ”accumulating sequence of Lipschitz cutoff
functions” condition (20) holds for the δ-local homogneous space A of noninterfer-
ence balls A (x, r), provided both the nondegeneracy condition (40) and size-limiting
condition (91) with B = A hold, and provided the aj are reverse Hölder of order p in
x1, uniformly in x2, ...xn, and Lipschitz continuous in x2, ...xn, uniformly in x1.

Proof. Fix a ball A (y, r) with y ∈ Ω, 0 < r < δ dist (y, ∂Ω), and let Aj (t) =
Aj (y, t). Note that Aj (t) is strictly incresasing as a function of t. Given r

2 < s <
t ≤ r, define

ψ (x) =
n\
j=1

ϕ

�
Aj (t)− |xj − yj |
Aj (t)−Aj (s)

�
,

where

ϕ (ξ) =

0, ξ ≤ 0ξ, 0 ≤ ξ ≤ 1
1, 1 ≤ ξ

.

We compute by the chain rule and the support conditions on ϕ that

|∇aψ (x)| ≤
n[
j=1

aj (x)χ{x∈A(y,r):Aj(s)≤|xj−yj |≤Aj(t)}
1

Aj (t)−Aj (s)
,

and thus by Minkowski’s inequality that�
1

|A (y, r)|

]
|∇aψ|p

� 1
p
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≤
n[
j=1

+
1

|A (y, r)|

]
{x∈A(y,r):Aj(s)≤|xj−yj |≤Aj(t)}

aj (x)
p

�
1

Aj (t)−Aj (s)

�p
dx

, 1
p

.

Fix x3 ∈
Tn
i=2 (yi −Ai (y, r) , yi +Ai (y, r)) for the moment. Since a1 ≡ 1, and aj is

reverse Hölder of order p in the first variable x1, we have for j ≥ 2,�
1

2r

] y1+r

y1−r
aj (x1, x

3)p dx1

� 1
p

≤ C
r

] y1+r

y1−r
aj (x1, x

3) dx1 ≤
C

r
Aj ((y1, x

3) , r) ≤ C
r
Aj (y, r) ,

by the size-limiting condition (91) with B = A. Thus for j ≥ 2,+
1

|A (y, r)|

]
{x∈A(y,r):Aj(s)≤|xj−yj |≤Aj(t)}

aj (x)
p dx

, 1
p

=

+
1Tn

i=2 2Ai (r)

]
Tn
i=2(yi−Ai(y,r),yi+Ai(y,r))

χ{xj :Aj(s)≤|xj−yj |≤Aj(t)}

�
1

2r

] y1+r

y1−r
aj (x1, x

3)p dx1

�
dx3
, 1

p

≤

 1Tn
i=2 2Ai (r)

2 (Aj (t)−Aj (s))

 \
i≥2,i9=j

2Ai (r)

�C
r
Aj (r)

�p
dx3


1
p

≤ C
r
Aj (r)

�
Aj (t)−Aj (s)

Aj (r)

� 1
p

.

A similar estimate holds for the case j = 1, and since Aj (y, r) ≈ Aj (y, t) by dou-
bling in the first variable (which is a standard consequence of the reverse Hölder
assumption), we have�

1

|A (y, r)|

]
|∇aψ|p

� 1
p

≤ C
r

n[
j=1

�
Aj (y, t)

Aj (y, t)−Aj (y, s)

�

=
C

r

n[
j=1

+U t
0
aj (y1 + ξ, y3) dξU t

s
aj (y1 + ξ, y3) dξ

,

≤ C
r

�
t

t− s

�d
,

by doubling in the first variable again, where d is the doubling exponent in]
J

aj (x) dx1 ≤ C
�
|J |
|I|

�d ]
I

aj (x) dx1, whenever I ⊂ J , 2 ≤ j ≤ n, uniformly in x2, . . . , xn.

Now let rj − rj+1 = r
5(j+1)2

, r0 = r, s = rj+1, t = rj and write ψj for ψ to obtain�
1

|A (y, r)|

] ��∇aψj��p� 1
p

≤ C
r

�
rj

rj − rj+1

�d
≤ C
r
(j + 1)2d .

It is now easy to verify that the sequence
�
ψ2j
�∞
j=1

satisfies the conditions in the
”accumulating sequence of Lipschitz cutoff functions” condition (20) with N = 2d.
This completes the proof of Proposition 62.
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We can now use the noninterference balls A (x, r) in Theorem 61 to obtain The-
orem 19, assuming the noninterference balls A satisfy the size-limiting condition
(91) and form a δ-local homogeneous space A = (Ω,A) adapted to X . Indeed, we
just finished establishing (20) under these conditions, and we observed earlier that
Proposition 33 shows we may assume A itself is a homogeneous space. The remaining
hypotheses of Theorem 61 are explicitly contained in Theorem 19. This completes
the reduction of the proof of Theorem 19 to demonstrating that the noninterference
balls A satisfy (91) and form a δ-local homogeneous space A = (Ω,A) adapted to X .
The reduction of the proof of Theorem 18 proceeds along similar lines. We must

first establish condition (20) directly in the spirit of Proposition 62.

Proposition 63 Let 1 < p ≤ ∞. The ”accumulating sequence of Lipschitz cut-
off functions” condition (20) holds for the δ-local homogneous space B of flag balls
B (y, r), provided Definition 10 holds, the aj are reverse Hölder of order p in x1,
uniformly in x2, ...xn, and Lipschitz continuous in x2, ...xn, uniformly in x1, and fi-
nally provided there is a positive constant c0 such that the following reverse doubling
inequality holds:

Bj (y, c0r) ≤
1

2
Bj (y, r) , y ∈ Ω, 0 < r < δ dist (y, ∂Ω) , 1 ≤ j ≤ n. (215)

Proof. We prove this using the same argument used in the proof of Proposition 62.
The only real difference is that the flag balls fail to be monotone, satisfying instead
the weak monotonicity condition

B (y, s) ⊂ B (y, r) , for 0 < s < cr < r < δ dist (y, ∂Ω) .

However, the reverse doubling property (215) of the side lengths Bj (x, r) of the
rectangles B (x, r) will compensate for this lack of monotonicity.
Suppose that y = 0, 0 < r < δ dist (0, ∂Ω) and set Bj (r) = Bj (y, r), B (r) =

B (y, r) for 1 ≤ j ≤ n. For 1
2r < t ≤ r, let Rj (t) = t

rBj (r) and consider the
rectangles

R (t) = (−t, t)×
n\
j=2

(−Rj (t) , Rj (t)) ,

which satisfy B (c0r) ⊂ R (t) ⊂ B (r). Note that R (t) is the rectangle B (r) dilated
by the factor t

r . Given
1
2r < s < t ≤ r, define

ψ (x) =
n\
j=1

ϕ

�
Rj (t)− |xj |
Rj (t)−Rj (s)

�
,

where

ϕ (ξ) =

0, ξ ≤ 0ξ, 0 ≤ ξ ≤ 1
1, 1 ≤ ξ

.

We compute by the chain rule and the support conditions on ϕ that

|∇aψ (x)| ≤
n[
j=1

aj (x)χ{x∈B(r):Rj(s)≤|xj |≤Rj(t)}
1

Rj (t)−Rj (s)
,

Since a1 ≡ 1, and aj is reverse Hölder of order p in the first variable x1, we have for
j ≥ 2,�
1

2r

] y1+r

y1−r
aj (x1, x

3)p dx1

� 1
p

≤ C
r

] y1+r

y1−r
aj (x1, x

3) dx1 ≤
C

r
Aj ((y1, x

3) , r) ≤ C
r
Bj (r) ,
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where the final inequality follows from the definition of Bj (r). Just as in the proof
of Proposition 62, Minkowski’s inequality now yields�

1

|B (r)|

]
|∇aψ|p

� 1
p

≤ C
r

n[
j=1

�
Bj (r)

t
rBj (r)−

s
rBj (r)

�
=
Cn

r

�
r

t− s

�
,

Now let rj − rj+1 = r
5(j+1)2

, r0 = r, s = rj+1, t = rj and write ψj for ψ to obtain�
1

|B (r)|

]
|∇aψ|p

� 1
p

≤ Cn
r

�
r0

rj − rj+1

�
=
Cn

r
(j + 1)

2
.

It is now easy to verify that the sequence
�
ψ2j
�∞
j=1

satisfies the conditions in the
”accumulating sequence of Lipschitz cutoff functions” condition (20) with N = 2.
This completes the proof of Proposition 63.

The remainder of the reduction of the proof of Theorem 18 is now carried out in
the same way as that of Theorem 19.

In this section, we have reduced the proofs of Theorems 13 and 18 (respectively
15 and 19) to proving that the flag balls B (respectively the noninterference balls A)
satisfy the reverse doubling condition (215) (respectively the size-limiting condition
(91)) and form a δ-local prehomogeneous (respectively δ-local homogeneous) space
adapted to X (note that our proof of Theorem 13 in subsection 4.5 required condition
(91) for the flag balls, but our proof of the stronger Theorem 18 in subsubsection
4.5.1 did not - nonetheless, we will establish (91) for the flag balls in the next section).
These latter properties will be proved in the next section.

5 Homogeneous spaces and subrepresentation inequalities

The purpose of this section is to show that for some δ > 0, the family of noninter-
ference balls {A (x, r)}x∈Ω,0<r<δ dist(x,∂Ω) is a δ-local homogeneous space satisfying
the size-limiting condition (91) that is adapted to X , and also that the family of
flag balls {B (x, r)}x∈Ω,0<r<δ dist(x,∂Ω) is a δ-local prehomogeneous space satisfying
the reverse doubling condition (215) that is adapted to X . The main restrictions on
the size of δ > 0 will arise in making sense of the definitions of noninterference and
flag balls, as well as in making sense of the statements of the various lemmas below
(where the supremum of quantities such as Aj (x, r) are taken over balls B (x,Cr)
for 0 < Cr < δ dist (x, ∂Ω)).

5.1 The noninterference balls
Let a (x) = (1, a2 (x) , . . . , an (x)), x = (x1, . . . , xn) ∈ Ω, be as above, except that
we do not assume the continuity of aj (x) in x. In particular, there is a doubling
constant Cd so that if I and J are appropriate one-dimensional intervals with J ⊂ 5I,
then ]

J

ai (x1, x2, . . . , xn) dx1 ≤ Cd
]
I

ai (x1, x2, . . . , xn) dx1

for each i uniformly in x2, . . . , xn, and there is a Lipschitz constant CL so that

|ai (x1, x2, . . . , xn)− ai (x1, x32, . . . , x3n)| ≤ CL max
j=2,...,n

��xj − x3j�� ,
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for each i uniformly in x1. Recall that given i = 2, . . . , n, x ∈ Ω and t ∈ (−∞,∞),
Ai (x, t) is defined by

Ai (x, t) =

] t

0

ai (x1 + s, x2, . . . , xn) ds.

Note that Ai (x, t) has the same sign as t. These definitions make sense provided
0 < t < δ dist (x, ∂Ω) for δ > 0 sufficiently small.
We assume in this section that Ai (x, t) 9= 0 if t 9= 0, for all x and i. Due to

doubling of ai in the first variable, this is equivalent to assuming that Ai (x, r) > 0
for all x when r > 0. The n-dimensional rectangles A (x, r), r > 0, are defined by

A (x, r) = (x1 − r, x1 + r)×
n\
i=2

(xi −Ai (x, r) , xi +Ai (x, r)) , (216)

and are contained in Ω provided 0 < r < δ dist (x, ∂Ω) for δ > 0 sufficiently small
depending on Cmax in (37). Note that these rectangles are nonempty, open and
bounded.
In addition to the doubling and Lipschitz conditions just mentioned, we also

assume in this subsection that each Ai (x, r) satisfies the following noninterference
condition (Definition 14 in the introduction): there are positive constants Cc and δ
such that for all x ∈ Ω and all r with 0 < r < δ dist (x, ∂Ω),

C−1c Ai (x, r) ≤ Ai (z, r) ≤ CcAi (x, r) , z ∈A (x, r) . (217)

Note that Ai (z, r) is defined if δ > 0 is sufficiently small depending on Cmax in (37). If
all the ai are the same, including the case n = 2 (when there is only one ai), it turns
out that (217) is automatically true - see Lemma 83 in the appendix; moreover,
as we will show in Lemma 82 in the appendix, (217) is a corollary of the strong
noninterference condition (41). Condition (217) implies that if 0 < r < δ dist (x,∂Ω),
then

C−(n−1)c |A (x, r)| ≤ |A (z, r) | ≤ Cn−1c |A (x, r)| , z ∈ A (x, r) ,
for the same constant Cc as in (217).
As x and r vary, the rectangles A (x, r) have an engulfing property, which is a

precursor to (56), that is described in the next lemma. If c is a positive constant,
cA (x, r) will denote the rectangle with center x whose dimensions are c times the
corresponding dimensions of A (x, r), i.e., cA (x, r) is the Euclidean dilation of A (x, r)
by the factor c in each coordinate direction, as opposed to the rectangle A (x, cr).
We remind the reader of the convention regarding δ > 0 in subsection 1.1 of the

introduction.

Lemma 64 Suppose that each ai is doubling in x1 uniformly in x2, . . . , xn and Lip-
schitz continuous in x2, . . . , xn uniformly in x1, and that (217) holds for some posi-
tive δ. If A (x, r) and A (y, s) are rectangles of type (216) with A (x, r)∩A (y, s) 9= ∅
and 0 < s ≤ r < δ dist (x, ∂Ω), s < δ dist (y, ∂Ω), then A (y, s) ⊂ cA (x, r) with
c = 1 + 2C2c .

Proof. Since A (y, s) and A (x, r) intersect, A (y, s) is contained in the rectangle with
center x whose half-dimensions are r + 2s and Ai (x, r) + 2Ai (y, s) , i = 2, . . . , n. If
z is a point in A (y, s)∩A (x, r), then by (217), Ai (y, s) ≤ CcAi(z, s) and Ai (z, r) ≤
CcAi (x, r) for all i. Also, Ai(z, s) ≤ Ai (z, r) since s ≤ r. Thus,

Ai (y, s) ≤ CcAi(z, s) ≤ CcAi (z, r) ≤ C2cAi (x, r) .
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Therefore, Ai (x, r) + 2Ai (y, s) ≤ (1 + 2C2c )Ai (x, r), and since also r + 2s ≤ 3r ≤
(1 + 2C2c )r, the lemma follows.
It is simple to show that since each ai (x) satisfies the doubling condition with

constant Cd in the first variable uniformly in the others, then there is a positive
constant d, depending only on Cd, such that if I and J are appropriate intervals in
(−∞,∞) with I ⊂ J ,]

J

ai(x1, x2, . . . , xn) dx1 ≤ Cd
�
|J |
|I|

�d ]
I

ai(x1, x2, . . . , xn) dx1 (218)

for all i uniformly in x2, . . . , xn. In fact we can choose d = ln5Cd. Moreover, as is
well-known, it follows that each ai (x) satisfies a reverse doubling condition in the
first variable uniformly in the others, i.e., there are positive constants hd,iCd, again
depending only on Cd, such that if I and J are intervals with I ⊂ J , then]

J

ai(x1, x2, . . . , xn) dx1 ≥ iCd� |J ||I|
�d̃ ]

I

ai(x1, x2, . . . , xn) dx1 (219)

for all i uniformly in x2, . . . , xn.
It follows immediately from the definition of Ai (x, ·) and from (218) and (219)

that Ai (x, ·) satisfies the following doubling and reverse doubling estimates for each
i:

iCd �r
s

�d̃
Ai (x, s) ≤ Ai (x, r) ≤ Cd

�r
s

�d
Ai (x, s) if 0 < s ≤ r < δ dist (x,∂Ω)

(220)
uniformly in x. Note that (220) implies that iCd ≤ 1 ≤ Cd and that hd ≤ d. We
always assume throughout this section that Ai (x, r) > 0 if r > 0, but (220) does not
require this assumption; in fact, (220) implies that if Ai (x, r) = 0 for some r > 0,
then Ai (x, r) = 0 for all r, so that ai vanishes identically on the line parallel to the
x1-axis through x.

5.1.1 Adapted noninterference balls

Combining Lemma 64 with the reverse doubling inequality in (220) yields the δ-local
engulfing property (68) for the rectangles A (x, r). Indeed, if A (x, r) ∩ A (y, r) 9= φ,
then A (y, r) ⊂ cA (x, r) by Lemma 64. By the first inequality in (220), cA (x, r) ⊂
A (x, γr) if we choose γ so that c = iCdγd̃. The doubling inequality in (220) yields the
δ-local doubling property (71) with Cdoub = 2dnCnd . The δ-local monotonicity and
scale properties (72) and (69) are immediate here, and as we have already observed,
the rectangles A (x, r) are nonempty and open. This completes the demonstration
that the family of noninterference balls A = {A (x, r)}x∈Rn,0<r<δ dist(x,∂Ω) forms a
δ-local homogeneous space A = (Ω,A)on Ω.
The noninterference condition in Definition 14 implies both the size-limiting con-

dition (91) and that the vector fields Xj = aj (x) ∂
∂xj
, 1 ≤ j ≤ n, are adapted to the

noninterference balls in the sense of Definition 58. The proofs of Theorems 15 and
19 are now complete as mentioned at the end of section 4.

Remark 22 Under the hypotheses of Theorem 15 or 19, the ratio
d(x,x3)

ρ in the
Hölder estimate (175) of Theorem 49 can be replaced with the larger quantity

max

+
|x1 − x31|

ρ
,

�
|x2 − x32|
A2 (y, ρ)

� 1
d

, ...,

�
|xn − x3n|
An (y, ρ)

� 1
d

,
,

111



where d is a doubling exponent as in (218). Indeed, the quasimetric d (x, x3) in
(175) is the symmetric quasimetric appearing in Theorem 6, which in turn arises
from an application of Lemma 29 to the quasimetric associated to the extension in
Proposition 33 of the δ-local homogeneous space A. The above estimate now follows
from a calculation using the definition (59) of quasimetric, the mononicity (72) of
the noninterference balls in A, and the second inequality in (220).

5.2 The flag balls
We now turn to showing that the flag balls satisfy the reverse doubling condition
(215), and form a δ-local prehomogeneous space that is adapted to the vector fields
Xj = aj (x)

∂
∂xj

in the sense of Definition 58 under the hypotheses of either Theorem
13 or 18. As mentioned at the end of section 4, this will complete the proofs of
Theorems 13 and 18. We now assume n ≥ 3 since otherwise the flag balls coincide
with the noninterference balls which have already been treated. The constants Cd
and CL are defined at the beginning of subsection 5.1, and the term ”geometric con-
stant” means a constant which only depends on n, Cd and CL. We consider vector
fields ∂

∂x1
, a2 (x)

∂
∂x2
, ..., an (x)

∂
∂xn

for x ∈ Ω, where the aj are nonnegative functions
doubling in the first variable x1 uniformly in x2, ..., xn, and Lipschitz continuous in
x2, ..., xn uniformly in x1. We emphasize again that we do not assume the conti-
nuity of the aj (x) in x. Our goal in this subsection is to show that the flag balls
B (x, r) satisfy the δ-local prehomogeneous space properties of engulfing (68), weak
monotonicity (70), scale (69) and doubling (71), to also show that the rectangleshB (x, r) satisfy the doubling condition (180) and the size-limiting condition (91), as
well as the reverse doubling condition (215) and the reverse size condition 2 in De-
finition 58. To accomplish all of this, we will need to impose additional conditions
on the functions aj as we go. However, we no longer assume in this section that
Aj (x, t) > 0 for t > 0, or that (217) holds.
We now redefine the flag balls introduced in the introduction, but in more detail

here. We begin by defining the Bj (x, r), j = 2, . . . , n. Fix x and r with x ∈ Ω,
0 < r < δ dist (x, ∂Ω), and define a rearrangement {j2, . . . , jn} of {2, . . . , n} and
corresponding functions {Bjk (x, r)}nk=2 inductively as follows. First, pick the least
j2 ∈ {2, . . . , n} with Aj2 (x, r) ≥ Aj (x, r) for all j = 2, . . . , n, and let

Bj2 (x, r) = Aj2 (x, r) = max
j
Aj (x, r) . (221)

For the next stage, we use Bj2 (x, r) to fill-out the remaining Aj (x, r) in the variable
xj2 , i.e., for each j 9= j2, we consider the quantity

max
zi=xi if i9=j2; |zj2−xj2 |≤Bj2 (x,r)

Aj (z, r) ,

and then pick the least j3 ∈ {2, . . . , n}, j3 9= j2, so that

max
zi=xi if i9=j2; |zj2−xj2 |≤Bj2 (x,r)

Aj3 (z, r) ≥ max
zi=xi if i9=j2; |zj2−xj2 |≤Bj2 (x,r)

Aj (z, r)

for all j 9= j2. Define

Bj3 (x, r) = max
zi=xi if i9=j2; |zj2−xj2 |≤Bj2 (x,r)

Aj3 (z, r)

= max
j 9=j2

�
max

zi=xi if i9=j2; |zj2−xj2 |≤Bj2 (x,r)
Aj (z, r)

�
.

112



Having defined Bj2 (x, r) , . . . , Bjk−1 (x, r), pick the least jk 9= j2, . . . , jk−1 with

max
zi=xi,i/∈{j2,...,jk−1}; |zi−xi|≤Bi(x,r),i∈{j2...,jk−1}

Ajk (z, r)

equal to or greater than

≥ max
zi=xi,i/∈{j2,...,jk−1}; |zi−xi|≤Bi(x,r),i∈{j2,...,jk−1}

Aj (z, r)

for all j 9= j2, . . . , jk−1, and define

Bjk (x, r) (222)

= max
zi=xi,i/∈{j2,...,jk−1}; |zi−xi|≤Bi(x,r),i∈{j2,...,jk−1}

Ajk (z, r)

= max
j /∈{j2,...,jk−1}

�
max

zi=xi,i/∈{j2,...,jk−1}; |zi−xi|≤Bi(x,r),i∈{j2,...,jk−1}
Aj (z, r)

�
.

All of these definitions make sense provided x ∈ Ω and 0 < r < δ dist (x, ∂Ω) for
δ > 0 sufficiently small depending on Cmax in (37). For convenience in notation,
we will refrain from writing ”x ∈ Ω and 0 < r < δ dist (x,∂Ω)” for most of the
remainder of the paper, but such a restriction will always be in force. We will also
always assume that each Bj (x, r) > 0 when r > 0.

Remark 23 Note that if we assume the aj (x) are continuous in x (or even just
in x1 if a1 ≡ 1), then the flag condition in Definition 10 holds if and only if each
Bj (x, r) > 0 when r > 0. Consequently, even when the aj (x) are not continuous, we
will always assume throughout this subsection the nondegeneracy condition that each
Bj (x, r) > 0 when r > 0.

Note that (222) holds only when k ≥ 3 and makes no sense when k = 2 because of
the pattern of the definition. When k ≥ 3, it implies that if j = jk, jk+1, . . . , jn and
if z is a point whose components satisfy zi = xi for i = 1, jk, . . . , jn and |zi − xi| ≤
Bi (x, r) for i = j2, . . . , jk−1, then

Bjk (x, r) ≥ Aj (z, r) .

In the remaining case k = 2, the last estimate of course holds with z = x, i.e.,

Bj2 (x, r) ≥ Aj (x, r) for all j ≥ 2.

The order of the permutation {j2, . . . , jn} generally depends on x and r, but we
have not attempted to show this in our notation. The simplest notation arises in
the special case when j2 = 2, . . . , jn = n, i.e., when there is no permutation in the
natural order. We then have

B2 (x, r) =A2 (x, r) , (223)

Bj (x, r) = max
|zi−xi|≤Bi(x,r),i=2,...,j−1

Aj ((x1, z2, . . . , zj−1, xj , . . . , xn), r) .

In this special case, we also have

Bj (x, r)≥Ak ((x1, z2, . . . , zj−1, xj , . . . , xn), r) (224)

for k≥ j ≥ 3, |zi − xi| ≤ Bi (x, r) ,
B2 (x, r)≥Ak (x, r) for k ≥ 2.
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For simplicity of notation, we often assume in the proofs below that the ordering is
the natural one, unless of course more than one pair x, r is being considered. In case
x = 0, we usually write Bjk (r) instead of Bjk(0, r). The next lemma shows that the

sequence {Bjk (x, r)}
n
k=2 is essentially monotone decreasing in k.

Lemma 65 Let {Bj (x, r)} be defined as above in the order Bj2 (x, r) , . . . , Bjn (x, r).
Then

Bjk+1 (x, r) ≤ (1 + rCL)Bjk (x, r) , k = 2, . . . , n− 1.
Consequently, if i > k then Bji (x, r) ≤ (1 + rCL)n−2Bjk (x, r).

Proof. The second statement follows easily from the first. To prove the first one,
consider the case of the natural ordering and x = 0. Fixing j and denoting Bj(0, r) =
Bj (r), we have from (223) that there exist z2, . . . , zj with |zi| ≤ Bi (r) and

Bj+1 (r) = Aj+1 ((0, z2, . . . , zj , 0, . . . , 0), r) .

In case j = 2, we obtain

B3 (r)≤ |A3 ((0, z2, 0, . . . , 0), r)−A3(0, r)|+A3(0, r)
≤ rCL|z2|+B2 (r) ≤ (1 + rCL)B2 (r) ,

where we have used the second part of (224). If j ≥ 3,

Bj+1 (r)≤ |Aj+1 ((0, z2, . . . , zj , 0, . . . , 0), r)−Aj+1 ((0, z2, . . . , zj−1, 0, . . . , 0), r)|
+Aj+1 ((0, z2, . . . , zj−1, 0, . . . , 0), r)
≤ rCL|zj |+Aj+1 ((0, z2, . . . , zj−1, 0, . . . , 0), r)
≤ rCLBj (r) + max

|ξi|≤Bi(r)
Aj+1

�
(0, ξ2, . . . , ξj−1, 0, . . . , 0), r

�
≤ rCLBj (r) +Bj (r) = (1 + rCL)Bj (r) ,

by (224) which completes the proof.

The functions Bj (x, r) are defined in a chosen order with some (but not all) of
the variables xi filled-out. The next lemma shows that the remaining variables can
also be filled-out in a similar way without much effect.

Lemma 66 If C ≥ 1, then

Bj (x, r) ≈ max
z:|z1−x1|≤Cr; |zi−xi|≤Bi(x,r),i≥2

Aj (z, r) .

The constants of equivalence are independent of x and r; they are geometric constants
which also depend on C.

Proof. The fact that the left side of the conclusion is at most the right side is
obvious from the definition of Bj (x, r). To show the opposite inequality (with an
appropriate constant factor), suppose we have the natural order and x = 0. Then by
definition,

Bj (r) = max
|ξi|≤Bi(r)

Aj
�
(0, ξ2, . . . , ξj−1, 0, . . . , 0), r

�
, j ≥ 3,

B2 (r) =A2(0, r).
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Fix C ≥ 1 and let z = (z1, . . . , zn) with |z1| ≤ Cr and |zi| ≤ Bi (r) for i ≥ 2. By
doubling in the first variable,

Aj (z, r) ≤ cAj ((0, z2, . . . , zn), r) .

Thus if j ≥ 3, since |zi| ≤ Bi (r) for i ≥ 2,

Aj (z, r)≤ c |Aj ((0, z2, . . . , zn), r)−Aj ((0, z2, . . . , zj−1, 0 . . . , 0), r)|
+cAj ((0, z2, . . . , zj−1, 0, . . . , 0), r)

≤ crCL
n[
i=j

|zi|+ cAj ((0, z2, . . . , zj−1, 0, . . . , 0), r)

≤ crCL
n[
i=j

Bi (r) + cBj (r)

≤ crCL(n− 1)(1 + rCL)n−2Bj (r) + cBj (r)
= c3Bj (r) ,

by Lemma 65. This completes the proof when j ≥ 3.
In the remaining case j = 2, we will show the better estimate

max
|z1|≤Cr; |zi|≤CB2(r),i≥2

A2 (z, r) ≤ cB2 (r) .

In fact, if |z1| ≤ Cr and |zi| ≤ CB2 (r) for i ≥ 2, then

A2 (z, r)≤ cA2 ((0, z2, . . . , zn), r)
≤ c |A2 ((0, z2, . . . , zn), r)−A2(0, r)|+ cA2(0, r)

≤ crCL
n[
2

|zi|+ cB2 (r) ≤ crCL(n− 1)CB2 (r) + cB2 (r) = c3B2 (r) ,

which completes the proof.

In Lemma 66, the first variable was filled-out by an amount Cr with C ≥ 1, but
the other variables were filled-out by only Bi (r), as opposed to CBi (r) , C > 1. We
now assume an extra condition which will allow us to fill-out all the variables by
larger amounts, and which will also be useful later for proving the doubling property
of Bj (x, r) in r for all x. In fact, we will assume that given C ≥ 1, there is a constant
c so that for all j, x and r,

max
|z1−x1|≤Cr; |zi−xi|≤CBi(x,r),i≥2

Aj (z, r) (225)

≤ c 1

r
Tn
i=2Bi (x, r)

]
|z1−x1|≤r; |zi−xi|≤Bi(x,r),i≥2

Aj (z, r) dz.

Note that since C ≥ 1, the inequality opposite to (225) is obvious with c = 1. In
subsection 6.5 of the appendix, we show that (225) holds if either of the following
two conditions is satisfied:

either each aj satisfies the RH∞ condition in each variable xi, i 9= j, 1, uniformly
in the other variables, i.e., there is a constant C such that for i, j = 2, . . . , n, i 9= j,
and all one-dimensional intervals I which contain xi,

aj(x1, . . . , xn) ≤ C
1

|I|

]
I

aj(x1, . . . , xi−1, zi, xi+1, . . . , xn) dzi, i, j ≥ 2, i 9= j,
(226)
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uniformly in xk for k 9= i,
or the Bj (x, r) satisfy a strong non-interference condition of the form

r

#
sup

z:|z1−x1|≤Cr; |zk−xk|≤CBk(x,r),k≥2

����∂aj∂zi
(z)

����
$
Bi (x, r) (227)

≤iC0Bj (x, r) , i, j ≥ 2, i 9= j

for all x and r and a suitably large geometric constant C. See Remark 5 for the
interpretation of sup in (227). Note that we never consider the partial derivative
∂/∂z1 in (227). Recall that all Bj (x, r) > 0 if r > 0 by the flag hypothesis 10. In
proving Theorem 13, we will only use that (226) implies (225). In subsection 6.5
of the appendix, we describe in Theorem 81 a variant of Theorem 13 that uses the
implication (227) =⇒ (225).
Assuming (225), we now easily obtain the following result.

Lemma 67 If (225) holds, then for C ≥ 1 and j = 2, . . . , n,

Bj (x, r) ≈ max
z:|z1−x1|≤Cr; |zi−xi|≤CBi(x,r),i≥2

Aj (z, r) .

The constants of equivalence are independent of x and r; they are geometric constants
which also depend on C and the constants in (225).

Proof. Let C ≥ 1. The left side of (225) is at least Bj (x, r) by definition of Bj (x, r),
and the right side of (225) is at most

max
|z1−x1|≤r; |zi−xi|≤Bi(x,r),i≥2

Aj (z, r) ,

which is bounded by cBj (x, r) by Lemma 66. The conclusion then follows immedi-
ately from (225).

Thus, (225) implies that Bj (x, r) is equivalent to either side of (225), and in
particular that

Bj (x, r) ≈
1

r
Tn
2 Bi (x, r)

]
|z1−x1|≤r; |zi−xi|≤Bi(x,r)

Aj (z, r) dz1 . . . dzn, j ≥ 3.

(228)
In fact, the domain of integration on the right can be enlarged by constant factors.
In the special case j = j2, we have a better result without assuming (225): given
a constant C, there is a geometric constant r1 which also depends on C so that if
0 < r < r1, then

Bj2 (x, r) ≈ Aj2 (z, r) if z satisfies |z1 − x1| ≤ Cr, |zj − xj | ≤ CBj2 (x, r) , j ≥ 2.
(229)

Recall that Bj (x, r) ≤ cBj2 (x, r) for all j by Lemma 65. The proof of (229) is similar
to part of the proof of Lemma 66. In fact, we showed there that if x = 0 and j2 = 2,
then

max
|z1|≤Cr; |zi|≤CB2(r),i≥2

A2 (z, r) ≤ cB2 (r) ,

while if z satisfies |z1| ≤ Cr and |zi| ≤ CB2 (r) for i ≥ 2, then we also have

B2 (r) =A2(0, r) ≤ cA2 ((z1, 0, . . . , 0), r)
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≤ c |A2 ((z1, 0, . . . , 0), r)−A2 ((z1, z2, . . . , zn), r)|+ cA2 ((z1, . . . , zn), r)

≤ cCLr
n[
2

|zi|+ cA2 (z, r)

≤ cCLr
n[
2

CB2 (r) + cA2 (z, r)

≤ cCL(n− 1)CrB2 (r) + cA2 (z, r) .

Choosing r small and absorbing the term cCL(n − 1)CrB2 (r), we obtain B2 (r) ≤
c3A2 (z, r) , and therefore,

B2 (r) ≤ c3 min
|z1|≤Cr; |zj |≤CB2(r),j≥2

A2 (z, r) ,

and (229) follows.

Remark 24 If (228) holds (e.g., if (225) holds), there is a variant of (228) which
involves integration over a smaller set. To state it, fix x and r and suppose that the
Bj (x, r) are defined in the order {jk : k = 2, . . . , n}. Then if k ≥ 2 and r is small,

Bjk (x, r) ≈
1T

j=j2,...,jk−1 Bj (x, r)

]
|zj−xj |≤Bj(x,r)

Ajk (z, r) dzj2 . . . dzjk−1 |zi=xi,i=1,jk,...,jn .

Moreover, in this integral average, the fixed variables z1, zjk , . . . , zjn that are cho-
sen above to be x1, xjk , . . . , xjn , respectively, can instead be chosen to be any values
y1, yjk , . . . , yjn with |y1 − x1| ≤ r and |yj − xj | ≤ Bj (x, r) , j = jk, . . . , jn, provided r
is small. To see this, suppose x = 0 and that we have the natural order. Fix j ≥ 2
and let |y1| ≤ r, |yj | ≤ Bj (r) , . . . , |yn| ≤ Bn (r). First note that by doubling in the
first variable, we may drop the part of the average in z1 and replace z1 by y1, i.e., by
(228) and doubling,

Bj (r) ≈
1Tn

i=2Bi (r)

]
|zi|≤Bi(r)

Aj ((y1, z2, . . . , zn), r ) dz2 . . . dzn.

Next, the absolute value of

1Tn
i=2Bi (r)

]
|zi|≤Bi(r)

Aj ((y1, z2, . . . , zn), r) dz2 . . . dzn−

1Tj−1
i=2 Bi (r)

]
|zi|≤Bi(r); i=2,...,j−1

Aj ((y1, z2, . . . , zj−1, yj , . . . , yn), r) dz2 . . . dzj−1

is at most
n[
j

CLr|zi − yi| ≤
n[
j

CLr2Bi (r) ≤ crBj (r)

by Lemma 65. For small r, the desired estimate now follows by combining estimates
and absorbing the term crBj (r). In case k = 2, (229) gives an even stronger equiv-
alence without assuming (228) or (225).

117



5.2.1 Doubling and monotonicity properties of flag balls

The next lemma establishes doubling and reverse doubling properties of Bj (x, r) like
those given in (220) for Aj (x, r). In the lemma, we will assume that each aj (x)
satisfies the doubling condition in each variable xi, i ≥ 1, i 9= j (uniformly in the
other variables), i.e., there is a constant C such that for all one-dimensional intervals
I, ]

2I

aj(x1, . . . , xn) dxi ≤ C
]
I

aj(x1, . . . , xn) dxi j ≥ 2, i ≥ 1, i 9= j,

uniformly in xk, k 9= i. We leave it to the reader to verify that this is equivalent to
assuming that each Aj (x, r) satisfies the doubling condition in each variable xi, i ≥
1, i 9= j, uniformly in r and the other variables. In fact, the corresponding constants
C can be chosen to be equal.

Lemma 68 If (225) holds and each aj (x) satisfies the doubling condition in each
variable xi, i 9= j, and is Lipschitz continuous in x2, ..., xn uniformly in x1, there are
positive constants hd, d∗ and C so that

C−1
�r
s

�hd
Bj (x, s) ≤ Bj (x, r) ≤ C

�r
s

�d∗
Bj (x, s) if 0 < s < r. (230)

In particular, Bj (x, r) satisfies the weak monotonicity property

Bj (x, s) ≤ Bj (x, r) if 0 < s < cr, (231)

with c = C−
1hd , and so the flag balls B (x, r) satisfy the weak monotonicity condition

(60). The constants hd, d∗ and C are geometric constants which also depend on the
constants in (225) and on the doubling constants of the aj (x) in each xi, i 9= j.

Proof. To show the first estimate in (230), namely Bj (x, s) ≤ C(s/r)
hdBj (x, r),

suppose x = 0 and fix 0 < s < r. Assume that the Bj (s) are defined in the natural
order 2, . . . , n while the Bj (r) are defined in the order j2, . . . , jn. We proceed by
induction on j. If j = 2, then

B2 (s) =A2 (s) ≤ C
�s
r

�hd
A2 (r) by (220)

≤C
�s
r

�hd
B2 (r) by definition of B2 (r).

Here we note that (220) does not require the fact that the Ai (x, t) 9= 0. Now let
j ≥ 3 and assume (by induction) that Bi (s) ≤ C(s/r)hdBi (r) for i = 2, . . . , j− 1 and
some hd > 0. Then by definition of Bj (s),

Bj (s) = max
|zi|≤Bi(s)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), s)

≤ max
|zi|≤C( sr )

hd
Bi(r)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), s)

≤ max
|zi|≤CBi(r)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), s) .

Since Aj satisfies the reverse doubling condition (220), we can continue with

≤ max
|zi|≤CBi(r)

�s
r

�hd
Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r)
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≤
�s
r

�hd
max

|zi|≤CBi(r)
Aj ((0, z2, . . . , zn), r) ≤ C

�s
r

�hd
Bj (r) ,

by Lemma 67. This proves the first part of (230). Note that the value of hd is the
same as in (220).
To prove the rest of (230), namely Bj (x, r) ≤ C(r/s)d

∗
Bj (x, s), 0 < s < r, we

again suppose that x = 0, but now assume that the Bj (r) are defined in the natural
order 2, . . . , n while the Bj (s) are defined in the order j2, . . . , jn. For j = 2,

B2 (r) =A2 (r) ≤ C
�r
s

�d
A2 (s) by (220)

≤C
�r
s

�d
B2 (s) by definition of B2 (s).

For j ≥ 3, assuming by induction that Bi (r) ≤ C(r/s)d1Bi (s) for i = 2, . . . , j − 1
and some d1 > 0, we obtain from (228) that

Bj (r)≤
cTj−1

2 Bi (r)

]
|zi|≤Bi(r)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 . . . dzj−1

≤ cTj−1
2 Bi (r)

]
|zi|≤C( rs )

d1Bi(s)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 . . . dzj−1

≤ cTj−1
2 Bi (r)

��r
s

�d1�d2 ]
|zi|≤Bi(s)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 . . . dzj−1

for some d2 > 0 by doubling of Aj (z, r) in each variable zi, i = 2, . . . , j − 1 (in
particular, i 9= j). Now, again by (220),

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) ≤ C
�r
s

�d
Aj ((0, z2, . . . , zj−1, 0, . . . , 0), s) .

Combining estimates gives

Bj (r)≤
cTj−1

2 Bi (r)

�r
s

�d1d2+d
max

|zi|≤Bi(s)
Aj ((0, z2, . . . , zj−1, 0, . . . , 0), s)

j−1\
2

Bi (s)

≤ c
�r
s

�d1d2+d−hd
max

|zi|≤Bi(s)
Aj ((0, z2, . . . , zj−1, 0, . . . , 0), s)

since

Bi (s) ≤ c
�s
r

�d̃
Bi (r)

by what has already been proved. By Lemma 66, the max above is bounded by a
multiple of Bj (s), and we obtain

Bj (r) ≤ c
�r
s

�d1d2+d−hd
Bj (s) .

The second estimate in (230) now follows if d∗ is chosen sufficiently large.
Finally, the weak monotonicity estimate (231) follows from the first part of (230)

since if 0 < s < cr, 0 < c ≤ 1, then

Bj (x, s) ≤ C
�cr
r

�d̃
Bj (x, r) = Bj (x, r)
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if Ccd̃ = 1. This completes the proof of the lemma.

We next derive an analogue of the noninterference condition for the side lengths
Bj (x, r) and the corresponding rectangles B (x, r) defined by

B (x, r) = {y : |y1 − x1| < r, |yj − xj | < Bj (x, r) , j ≥ 2} . (232)

Lemma 69 Let (225) hold and suppose each aj (x) satisfies the doubling condition
in each variable xi, i 9= j, and is Lipschitz continuous in x2, ..., xn uniformly in x1.
If c1 is a positive constant, there is a positive constant r1 so that if 0 < r < r1 and
y ∈ B(x, c1r), then

Bj (y, r) ≈ Bj (x, r) , j ≥ 2.
The constants of equivalence and r1 are geometric constants which also depend on c1
and the constants in the other conditions.

Proof. Let x = 0 and y ∈ B(0, c1r). Then y satisfies |y1| ≤ c1r and |yi| ≤ Bi(c1r)
if i ≥ 2, and so also |yi| ≤ c3Bi (r) if i ≥ 2 by (230). We will show that Bj (y, r) ≤
CBj (r) by induction on j, assuming that the Bj (y, r) are defined in the natural
order. For j = 2,

B2 (y, r) = A2 (y, r) ≤ CB2 (r)
by definition of B2 (y, r) and Lemma 67. Now assume that j ≥ 3 and Bi (y, r) ≤
CBi (r) for i = 2, . . . , j − 1. We have

Bj (y, r) = max
|zi−yi|≤Bi(y,r)

Aj ((y1, z2, . . . , zj−1, yj , . . . , yn), r)

≤ max
|zi−yi|≤CBi(r)

Aj ((y1, z2, . . . , zj−1, yj , . . . , yn), r)

≤ max
|zi|≤(C+c3)Bi(r)

Aj ((y1, z2, . . . , zj−1, yj , . . . , yn), r)

since |zi| ≤ |zi − yi|+ |yi| and |yi| ≤ c3Bi (r) , i ≥ 2. Thus,

Bj (y, r) ≤ max
|z1|≤c1r; |zi|≤(C+c3)Bi(r),i≥2

Aj (z, r) ≤ c33Bj (r)

by Lemma 67. This completes the proof that Bj (y, r) ≤ CBj (r) for j ≥ 2.
To prove the opposite inequality Bj (r) ≤ CBj (y, r) (with x = 0 and y ∈

B(0, c1r)), we again proceed by induction, but now we assume that the Bj (r) (rather
than the Bj (y, r)) are defined in the natural order. For j = 2 and r small,

B2 (r) ≤ cA2 (y, r) ≤ cB2 (y, r)

by (229) and (224). For j ≥ 3, by doubling in the first variable,

Bj (r) = max
|zi|≤Bi(r)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r)

≤ max
|zi|≤Bi(r)

CdAj ((y1, z2, . . . , zj−1, 0, . . . , 0), r)

≤ max
|zi−yi|≤(1+c3)CBi(y,r)

CdAj ((y1, z2, . . . , zj−1, 0, . . . , 0), r)

since if |zi| ≤ Bi (r), then

|zi − yi| ≤ |zi|+ |yi| ≤ (1 + c3)Bi (r) ≤ (1 + c3)CBi (y, r) , i = 2, . . . , j − 1,

by the inductive hypothesis. By applying Lemma 67 to the last max, we obtain
Bj (r) ≤ c33Bj (y, r), and the lemma is proved.
The rectangles B (x, r) defined by (232) satisfy the engulfing property, as we show

in the next lemma.

120



Lemma 70 Let (225) hold and suppose each aj (x) satisfies the doubling condition
in each variable xi, i 9= j, and is Lipschitz continuous in x2, ..., xn uniformly in x1.
There is a geometric constant r1 and a geometric constant C which also depends on
the constants in the other conditions so that if B (x, r)∩B (y, r) 9= φ and 0 < r < r1,
then B (y, r) ⊂ B(x,Cr).

Proof. Let x = 0 and choose a point z ∈ B(0, r)∩B (y, r). Then |z1| < r, |z1−y1| <
r, |zi| < Bi (r) for i ≥ 2, and |zi − yi| < Bi (y, r) for i ≥ 2. Let ξ ∈ B (y, r). Then
|ξ1−y1| < r and |ξi−yi| < Bi (y, r) for i ≥ 2, and in order to prove that ξ ∈ B(0, Cr),
we must show that |ξ1| < Cr and |ξi| < Bi(Cr), i ≥ 2. First,

|ξ1| ≤ |ξ1 − y1|+ |y1 − z1|+ |z1| < r + r + r = 3r.

Next, for i ≥ 2,

|ξi| ≤ |ξi − yi|+ |yi − zi|+ |zi| < Bi (y, r) +Bi (y, r) +Bi (r) .

But Bi (y, r) ≤ cBi (r); in fact by Lemma 69, Bi (y, r) ≈ Bi (z, r) ≈ Bi (r) since
z ∈ B (y, r) and z ∈ B(0, r). Thus

|ξi| < c3Bi (r) ≤ Bi(Cr), i ≥ 2,

and the lemma follows.

The flag balls form a δ-local prehomogeneous space Lemma 70 yields
the δ-local engulfing property (68) for the rectangles B (x, r) with γ = C. Lemma 68
yields the δ-local doubling property (71) with Cdoub = 2d

∗nCn, and the δ-local weak
monotonicity property (70). The δ-local scale property (69) is immediate, and the
rectangles B (x, r) are nonempty and open by our nondegeneracy assumption that
Bj (x, r) > 0 when r > 0. This completes the demonstration that the family of flag
balls B = {B (x, r)}x∈Rn,0<r<∞ forms a δ-local prehomogeneous space B = (Ω,B) on
Ω.

5.2.2 A∞ properties of flag balls

Our next goal is to show that Definition 58 holds for the flag balls B (x, r). However,
the Aj (x, r) may now vanish. This possibility is offset by the flag condition 10,
which by Remark 23 implies that Bj (x, r) > 0 if r > 0. We also assume that
(225) holds, together with an extra condition of A∞ type which turns out to hold
automatically if each aj (z) belongs to RH∞ in each variable zi, i 9= j, 1, uniformly in
the other variables. In order to define this extra condition, fix x and r, and suppose
the Bj (x, r) are defined in the order {jk}nk=2. For each jk with k ≥ 3, define

B(jk) (x, r) = {z : |zi − xi| ≤ Bi (x, r) if i = j2, . . . , jk−1; zi = xi if i = 1, jk, . . . , jn} .

If we think ofB(jk) (x, r) as a (k−2)-dimensional rectangle in the variables zj2 , . . . , zjk−1 ,
then its measure is given by

|B(jk) (x, r) |(k−2) =
k−1\
i=2

2Bji (x, r) .

We will assume the following A∞-type condition: there are positive constants c and
η such that for all k ≥ 3, all x and r, and every measurable set E ⊂ B(jk) (x, r),

|E|(k−2)��B(jk) (x, r)��
(k−2)

≤ c
# U

E Ajk (z, r) dzj2 . . . dzjk−1 |zi=xi,i=1,jk,...,jnU
B(jk)(x,r)

Ajk (z, r) dzj2 . . . dzjk−1 |zi=xi,i=1,jk,...,jn

$η

.

(233)
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Condition (233) differs from ordinary A∞ conditions because as x and r vary, so do
the integrands on the right. An important feature of (233) is that when considered as
a condition on any particularAj , it does not involve the corresponding j-th coordinate
(or the first coordinate). In practice, the condition is not easy to verify, but a more
familiar condition which implies it is that each aj (z) satisfies the A∞ condition in
each zi, i 9= j, 1, uniformly in the other variables, i.e., that there exist constants
c1, η1 > 0 so that if I is a one-dimensional interval and E is a measurable subset of
I, then ]

E
aj (z) dzi ≤ c1

�
|E|
|I|

�η1 ]
I

aj (z) dzi, i 9= j, 1, (234)

for all zk, k 9= i. In fact, by integrating both sides of this inequality with respect to
z1 and applying Fubini’s Theorem, we obtain]

E
Aj (z, r) dzi ≤ c1

�
|E|
|I|

�η1 ]
I

Aj (z, r) dzi, i 9= j, 1,

for all r and zk, k 9= i. As a consequence, Aj (z, r) belongs to product A∞ (i.e., A∞ for
arbitrary rectangles with sides parallel to the coordinate axes) in any subcollection of
the variables z2, . . . , zj−1, zj+1, . . . , zn uniformly in r, z1, zj and the variables which
are not in the subcollection. From this, we obtain (233) as a corollary, and in fact
we even obtain a stronger statement: there are constants c, η > 0 such that if 3 ≤
k ≤ n and zi2 , . . . , zik−1 is any subcollection of z2, . . . , zj−1, zj+1, . . . , zn, R is any
(k − 2)-dimensional rectangle with edges parallel to the coordinate axes, and E is a
measurable subset of R, then

|E|(k−2)
|R|(k−2)

≤ c
�U

E Aj (z, r) dzi2 . . . dzik−1U
R
Aj (z, r) dzi2 . . . dzik−1

�η
for all r > 0 and zc /∈ {zi2 , . . . , zik−1}, 1 ≤ c ≤ n.
We note in passing that since RH∞ implies A∞, (234) (and so also (233)) holds if

each aj (z) satisfies RH∞ in each variable zi, i 9= j, 1, uniformly in the other variables.
Thus the hypotheses of Theorem 13 yield condition (233).
We begin by showing that for most z in a flag ball B (x, r), Aj (z, r) is almost as

large as its average over the flag ball B (x, r) .

Lemma 71 Suppose that (225) and (233) hold, and let ε > 0. Then there are
positive constants r0 and c so that for all x and all r with 0 < r ≤ r0,�����
+
z ∈ B (x, r) : Aj (z, r) > ε

1

|B (x, r)|

]
B(x,r)

Aj (y, r) dy

,����� ≥ (1− cε η
1−η ) |B (x, r)| .

Here, r0 and c are geometric constants which also depend on the constants in the
other conditions, and r0 also depends on ε. The value of η is the same as in (233).

Thus, if ε is small and r ≤ r0, Aj(·, r) exceeds ε times the average over B (x, r)
of Aj(·, r) on a large portion of B (x, r).
Proof. Fix x and r, and write B = B (x, r), etc. We consider the case x = 0 with
the natural ordering of the Bj (r). The conclusion in case j = 2 is obvious by (229),
so we may consider fixed j ≥ 3. Let

E =
�
ζ ∈ B(j) : Aj(ζ, r) > ε

1

|B(j)|(j−2)

]
B(j)

Aj((0, y2, . . . , yj−1, 0, . . . , 0), r) dy2 . . . dyj−1

�
,

122



where
B(j) =

�
ζ = (0, ζ2, . . . , ζj−1, 0, . . . , 0) : |ζi| ≤ Bi (r)

�
.

We first show that
|E|(j−2) ≥ (1− cε

η
1−η )|B(j)|(j−2).

Indeed, by (233), there exist c, η > 0 such that

|B(j) \ E|(j−2)
|B(j)|(j−2)

≤ c
#U

B(j)\E Aj((0, ζ2, . . . , ζj−1, 0, . . . , 0), r) dζ2 . . . dζj−1U
B(j) Aj((0, ζ2, . . . , ζj−1, 0, . . . , 0), r) dζ2 . . . dζj−1

$η

≤ c
#
ε |B(j) \ E|(j−2)
|B(j)|(j−2)

$η

by definition of E. Thus, |B(j) \ E|(j−2) ≤ cε
η

1−η |B(j)|(j−2), and consequently,

|E|(j−2) = |B(j)|(j−2)−|B(j)\E|(j−2) ≥ |B(j)|(j−2)−cε
η

1−η |B(j)|(j−2) = (1−cε
η

1−η )|B(j)|(j−2),

as desired. Next, let ζ ∈ E, ζ = (0, ζ2, . . . , ζj−1, 0, . . . , 0), and consider any z ∈ B
with zi = ζi for i = 2, . . . , j − 1 and z1, zj , . . . , zn unrestricted. By doubling in the
first variable,

1

c1
Aj (z, r)≥Aj((0, z2, . . . , zn), r)

≥Aj(ζ, r)− |Aj((0, z2, . . . , zn), r)−Aj(ζ, r)|

≥Aj(ζ, r)−
] r

0

 n[
i=j

CL|zi|

 dt by definition of z, ζ

≥Aj(ζ, r)− rCL
n[
i=j

CBi (r) since z ∈ B

≥Aj(ζ, r)− rCL(n− 2)(1 + rCL)n−2CBj (r) by Lemma 65.

Since ζ ∈ E,

Aj(ζ, r)> ε
1

|B(j)|(j−2)

]
B(j)

Aj((0, y2, . . . , yj−1, 0, . . . , 0), r) dy2 . . . dyj−1

≥ εc2Bj (r)

by Remark 24. Combining estimates, we obtain

1

c1
Aj (z, r)≥

�
εc2 − rCL(n− 2)(1 + rCL)n−2C

�
Bj (r)

≥ 1
2
εc2Bj (r)

if r ≤ r1 for a sufficiently small constant r1 depending on ε. Hence, by (228),

Aj (z, r) ≥
1

2
c1c2εc3

1

|B|

]
B

Aj (y, r) dy

if z belongs to the Cartesian product

(−r, r)× E ×
n\
i=j

(−Bi (r) , Bi (r)) .
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The measure of this product is

|E|(j−2)2r
n\
i=j

2Bi (r) ≥ (1− cε
η

1−η )|B(j)|(j−2)2r
n\
i=j

2Bi (r) = (1− cε
η

1−η )|B|,

which proves the lemma.

Remark 25 The conclusion of Lemma 71 holds if instead of assuming (225) and
(233), we assume only that there are positive constants c and η independent of x and
r such that for each j and every measurable set E with E ⊂ B (x, r),

|E|
|B (x, r)| ≤ c

# U
E Aj (z, r) dzU

B(x,r)
Aj (z, r) dz

$η

.

This can be proved in a simpler way than Lemma 71, without considering Cartesian
products, and we leave the verification to the reader. The condition holds if aj (z)
satisfies the A∞ condition in each variable xi uniformly in the other variables. How-
ever, as mentioned earlier, an advantage of (233) is that it requires no hypothesis on
aj in the j-th variable.

Lemma 72 Let (225) and (233) hold. Then given ν > 0, there exists ε > 0 inde-
pendent of x and r such that

|{z ∈ B (x, r) : Aj (z, r) > εBj (x, r) for all j}| ≥ (1− ν) |B (x, r)| .

Proof. It is enough to prove the inequality for each fixed j. Denote B = B (x, r).
By Lemma (71), there exist c, η > 0 such that for all ε > 0,�����z ∈ B : Aj (z, r) > ε

1

|B|

]
B

Aj (y, r) dy

����� ≥ (1− cεη)|B|.
Therefore, by (225) and Lemma 67,

|{z ∈ B : Aj (z, r) > εBj (x, r)}| ≥ (1− c3εη)|B|,

and we’re done.

Adapted flag balls We have already shown at the end of subsubsection 5.2.1
that the flag balls B form a δ-local prehomogeneous space B = (Ω,B) on Ω, and
Lemma 66 yields the size-limiting condition (91). The hypotheses of Theorems 13
and 18 imply both (225) and (233). Thus in Lemmas 66 and 72 we have established
conditions 1 and 2 respectively of Definition 58, and in Lemma 68 we have established
the reverse doubling condition (215). As mentioned earler, this completes the proofs
of Theorems 13 and 18.

Remark 26 Under the hypotheses of Theorem 13 or 18, the quasimetric d (x, y) in
the Hölder estimate (175) of Theorem 49 can be replaced with

max

+
|x1 − y1|

r
,

�
|x2 − y2|
B2 (y, r)

� 1
d∗
, ...,

�
|xn − yn|
Bn (y, r)

� 1
d∗
,
,

where d∗ is the doubling exponent in (230). Indeed, the quasimetric d (x, x3) in (175)
is the symmetric quasimetric appearing in Theorem 6, which in turn arises from an
application of Lemma 29 to the quasimetric associated to the extension in Proposi-
tion 33 of the δ-local homogeneous space A. The above estimate now follows from
a calculation using the definition (59) of quasimetric, the mononicity (72) of the
noninterference balls in A, and the second inequality in (230).
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6 Appendix

Here we collect some technical results needed for our development above, as well as
some peripheral material mentioned above. In subsection 6.1 we demonstrate the
necessity of the Fefferman-Phong condition for Lq-subellipticity. In subsection 6.2
we show the near necessity of the Sobolev and Poincaré inequalities for some related
notions of subellipticity for Dirichlet and Neumann boundary value problems. In
subsection 6.3 we show that the noninterference balls A (x, r) associated to a collec-
tion of vector fields X are Ω-locally equivalent to the subunit balls K (x, r) if and
only if the vector fields are reverse Hölder of infinite order in the first variable x1.
Subsection 6.4 exhibits a collection X of vector fields such that Theorem 61 or 6
applies to the associated family of noninterference balls A (x, r) to show that X is
Lq-subelliptic, but for which the noninterference balls A (x, r) fail to be Ω-locally
equivalent to the subunit balls K (x, r). Subsection 6.5 contains the technical proof
of a product reverse Hölder implication needed in section 5. Subsection 6.6 demon-
strates some implications regarding the noninterference condition and its strong form.
In the final two subsections, 6.7 and 6.8, we briefly describe some alternate notions
of weak solution to a degenerate elliptic equation, and some alternate methods of
proof.

6.1 Necessity of the Fefferman-Phong condition
In subsubsection 1.1.1 of the introduction we stated that the Fefferman-Phong con-
dition (5) is necessary for the stable subellipticity of the continuous quadratic form
Q (x, ξ). Here is the proof.

Proposition 73 Let Q (x, ξ) be a nonnegative semidefinite continuous quadratic
form in Ω. Suppose that the family of quadratic forms Qτ (x, ξ) = Q (x, ξ) + τ |ξ|2,
0 < τ < 1, is subelliptic in Ω in the sense of Definition 5 uniformly in 0 < τ < 1,
in the sense that (25) holds with α and C independent of 0 < τ < 1. Then the
containment condition (19) holds.

Proof. Let Q (x, ξ) = ξ3Q (x) ξ with the matrix Q (x) symmetric. If Pτ (x) is a
measurable matrix with Pτ (x)

3 Pτ (x) = Q (x) + τI, then with y fixed and uτ (x) =
δτ (x, y), the fundamental inequality (21), or more precisely (176), shows that

Lτuτ = T
3g

where
Lτ = ∇ (Q (x) + τI)∇ = [Pτ (x)∇]3 [Pτ (x)∇]

and

g =Pτ (x)∇u is bounded independent of 0 < τ < 1 by (176),

T =Pτ (x)∇ is subunit with respect to Q (x) + τI.

The uniform L∞-subellipticity of Q (x, ξ) + τ |ξ|2 then shows that uτ is Hölder con-
tinuous of order α > 0, independent of 0 < τ < 1, and it follows that

δτ (x, y) = |uτ (x)− uτ (y)| ≤ C |x− y|α ,

with C and α independent of 0 < τ < 1. Lemma 50 now shows that

δ (x, y) = lim
τ→0

δτ (x, y) ≤ C |x− y|α ,
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which yields (5) with ε = α.
In certain cases when Q is a sum of squares, we can show the necessity of the

ε-comparability condition (5) for subellipticity, rather than stable subellipticity, of
Q.

Proposition 74 Suppose the vector fields Xj = aj (x) ∂
∂xj
, 1 ≤ j ≤ n, are Lipschitz

continuous and satisfy the subelliptic Definition 8 in Ω. Then there is ε > 0 such
that the ε-comparability condition (5) holds for the subunit balls K (x, r) associated
to the quadratic form Q (x, ξ) =

Sn
j=1

�
aj (x) ξj

�2
.

Proof. Suppose the vector fields {Xj}nj=1 are subelliptic, and let L be the ”sum
of squares” operator

Sn
j=1X

3
jXj . Then by (3), the quadratic form inequality (33)

holds with csym = Csym = 1. Let α be the positive Hölder exponent that arises
in Definition 8 for a compact neighbourhood of x, and set N = 1

α . We will first
show the following inequality by refining the argument used in Proposition 11 of the
introduction to prove the necessity of the flag condition:

sup
|zi−xi|≤rχI(i)

[
j /∈I

aj (z) ≥ crN , 0 < r < r0,φ 9= I {1, 2, ..., n} , (235)

for a constant c independent of x and r. By reordering variables, we suppose I =
{m+ 1,m+ 2, ..., n} for some 1 ≤ m < n. As in the proof of Proposition 11, define

ϕ on [0,∞) by ϕ (t) =
�
t, 0 ≤ t ≤ 1
1, t > 1

, and let ψ (t) be a smooth compactly supported

function in (−1, 1) that is identically one on
�
−12 ,

1
2

�
. Fix x and 0 < r < 1, and

suppose that

δ = r−N sup
|zi−xi|≤rχI(i)

m[
j=1

aj (z) < 1.

Set u (z) = rϕ
�
|z3−x3|
δrN

�
ψ

�
|z33−x33|

r

�
where z3 = (z1, ..., zm) and z33 = (zm+1, ..., zn),

and define fj = Xju = aj
∂u
∂xj
. Since aj is Lipschitz and satisfies aj (z) ≤ δrN on

{z : |zi − xi| ≤ rχI (i)} for 1 ≤ j ≤ m, we have |aj (z)| ≤ δrN + C |z3 − x3| for
z ∈ Br ≡

Tn
i=1 [xi − r, xi + r], and so then

|fj (z)|=
����aj (z) ∂u

∂xj
(z)

���� ≤ Craj (z) ����ϕ3� |z3 − x3|δrN

����� 1

δrN

≤Cr
�
δrN + CδrN

� 1

δrN
≤ C,

for 1 ≤ j ≤ m. For j > m, we have

|fj (z)| =
����aj (z) ∂u

∂xj
(z)

���� ≤ Cr ����ψ3� |z33 − x33|r

����� 1r ≤ C.
Thus u is a W 1,2 (Ω) weak solution of

Lu =
n[
j=1

T 3jfj ,
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where Tj = Xj is subunit, and nun2 , nfjn∞ ≤ C, and so nunLipα ≤ C by the
subellipticity of {Xj}nj=1. However, if |z3 − x3| = δrN , then

C ≥ nunLipα ≥
u (z3, x33)− u (x3, x33)

|z3 − x3|α =
rϕ (1)ψ (0)− rϕ (0)ψ (0)

|z3 − x3|α

=
r − 0

|z3 − x3|α = δ−αr1−Nα = δ−α,

which yields (235) with c = C−
1
α .

We will now obtain the Fefferman-Phong condition (5) with ε = αn, by using (235)
to construct a subunit curve of length Cr connecting an arbitrary pair of points x, y
with |x− y| ≤ rNn

. Recall N = 1
α . So fix x, y with |x− y| ≤ rN

n

, and without loss
of generality we may assume that a1 (x) ≡ 1 and that yj ≥ xj for 1 ≤ j ≤ n. Now
by (235) with I = {1}, and reordering variables, there is z11 in [x1 − r, x1 + r] with
a2
�
z11 , x2, ..., xn

�
≥ crN . Let r2 = βcrN+1 < βcrN with β sufficiently small (depend-

ing only on the Lipschitz constant) that a2 (w) ≥ c
2r
N for

��w − �z11 , x2, ..., xn��� ≤
100r2. By (235) with I = {1, 2} and r = r2, and reordering variables, there is�
z21 , z

2
2

�
in
�
z11 − r2, z11 + r2

�
× [x2 − r2, x2 + r2] with a3

�
z21 , z

2
2 , x3, ..., xn

�
≥ crN2 =

c3r
N2+N . Then with r3 = βc3r

N2+N+1 (same β), we have a3 (w) ≥ c3
2 r

N2+N for��w − �z21 , z22 , x3, ..., xn��� ≤ 100r3. Continuing in this way we obtain �zj−11 , ..., zj−1j−1
�

in
Tj−2
i=1

k
zj−2i − rj−1, zj−2i + rj−1

l
× [xj−1 − rj−1, xj−1 + rj−1], 3 ≤ j ≤ n, and

r2, ..., rn such that with Nj =
Sj−1

i=0 N
i,

aj

�
zj−11 , ..., zj−1j−1 , xj , ..., xn

�
≥ cjrNj , 2 ≤ j ≤ n,

and
aj (w) ≥

cj
2
rNj if

���w − �zj−11 , ..., zj−1j−1 , xj , ..., xn
���� ≤ 100rj , (236)

where rj = βcjr
Nj , and the constants cj depend only on β, N and c in (235),

2 ≤ j ≤ n.
We can now connect (x1, ..., xn) to

�
z11 , x2, ..., xn

�
by a subunit curve - γ is subunit

if (γ3 (t) · ξ)2 ≤
Sn
j=1 aj (γ (t))

2
ξ2j - of length at most r, namely

γ (t) = (x1 + t, x2, ..., xn) , 0 ≤ t ≤ z11 − x1.

Then using (236) with j = 2 we connect
�
z11 , x2, ..., xn

�
to
�
z21 , z

2
2 , x3, ..., xn

�
by a

subunit curve consisting of two segments each of length at most r, namely

γ1 (t) =
�
z11 + t, x2, ..., xn

�
, 0 ≤ t ≤ z21 − z11 ≤ r2 ≤ r,

γ2 (t) =
�
z21 , x2 +

c2
2
rN t, x3, ..., xn

�
, 0 ≤ t ≤ 2z

2
2 − x2
c2rN

≤ r,

where we have used that 2r2
c2rN

≤ r and c2 = c. Using (236) with j = 3 we simi-
larly connect

�
z21 , z

2
2 , x3, ..., xn

�
to
�
z31 , z

3
2 , z

3
3 , x4, ..., xn

�
by a subunit curve consist-

ing of three segments each of length at most r. We continue this process until
we reach

�
zn−11 , ..., zn−1n−1 , xn

�
. Then using (236) with j = n and |x− y| ≤ rNn

(recall that Nn ≤ Nn, r < 1 and that we initially assumed |x− y| ≤ rNn) we
can connect

�
zn−11 , ..., zn−1n−1 , xn

�
to
�
zn−11 , ..., zn−1n−1 , yn

�
, then

�
zn−11 , ..., zn−1n−1 , yn

�
to�

zn−21 , ..., zn−2n−2 , yn−1, yn
�
, etcetera, until we finally connect

�
z11 , y2, ..., yn

�
to (y1, ..., yn),

all by subunit curves of multiple segments and lengths at most Cr. Since Nn ≤ Nn,
this completes the proof of the proposition.
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Remark 27 From the above proof, we also obtain that subellipticity of Lipschitz
vector fields {Xj}nj=1, Xj = aj (x)

∂
∂xj
, implies the ε-comparability condition for the

flag balls B (x, r) in place of K (x, r):

D (x, r) ⊂ B (x,Crε) , x ∈ Ω, 0 < r ≤ 1.

Of course, the remark is a direct corollary of Proposition 74 if K ⊂ B, as is the
case if the size limiting condition (91) holds and the aj are reverse Hölder in the x1
variable, uniformly in the other variables.

6.2 Necessity of the Sobolev and Poincaré inequalities
As stated in subsubsection 1.1.1 of the introduction, the Sobolev inequality (15) is
necessary for a variant of the notion of subellipticity of the quadratic form Q. Recall
that Q (x, ξ) = ξ3Q (x) ξ is Lq-subelliptic relative to the homogeneous Dirichlet prob-
lem for the balls B (x, r), if we assume existence of weak solutions u to homogeneous
Dirichlet problems for the balls B:�

Lu= f in B
u = 0 on ∂B

, (237)

where L = ∇3Q (x)∇ and f ∈ L q
2 (B); as well as the global boundedness estimate,

sup
z∈B

|u (z)| ≤ C
�]

B

|f |
q
2

� 2
q

, (238)

for these weak solutions u to (237). We will restrict our statement and proof to the
case where weak solution here is interpreted in the classical W 1,2 sense, although the
proof adapts readily to other notions of weak solution.

Lemma 75 Suppose that Q (x, ξ) is Lq-subelliptic relative to the homogeneous Dirich-
let problem for the balls B (x, r) in the classical W 1,2 sense for some q < Q∗, where
Q∗ is the lower dimension of the space of balls B (x, r). Then the Sobolev inequality
(15) holds with σ = q

q−2 .

Proof. Given f ∈ L q
2 (B) with q = 2σ3 < Q∗, let u be the weak W 1,2 solution to

the degenerate elliptic Dirichlet problem (237) where L = ∇3Q (x)∇ is the operator
with symbol ξ3Q (x) ξ = Q (x, ξ). Then for w ∈ Lip0 (B) and f nonnegative, we have]

B

w2f =

]
B

w2∇3Q (x)∇u = −2
]
B

w k∇u,∇wl

≤
�]

B

w2 n∇un2Q
� 1

2
�]

B

n∇wn2Q
� 1

2

.

Now the square of the first factor satisfies]
B

w2 n∇un2Q =
]
B

(∇u)3w2Q (x)∇u = −
]
B

u∇3
�
w2Q (x)∇u

�
=−2

]
B

ku∇w,w∇ul −
]
B

uw2f

≤ 1
2

]
B

w2 n∇un2Q + 2
]
B

u2 n∇wn2Q +
]
B

|u|w2f,
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and absorbing the first term on the right-hand side yields]
B

w2 n∇un2Q ≤ 4
�
sup
B
|u|
�2 ]

B

n∇wn2Q + 2
�
sup
B
|u|
�]

B

w2f (239)

≤Cmax
+�

sup
B
|u|
�2 ]

B

n∇wn2Q ,
�
sup
B
|u|
�]

B

w2f

,
.

No matter which term on the right-hand side of (239) is actually the maximum, these
inequalities together with (238) give]

B

w2f ≤C
�
sup
B
|u|
�]

B

n∇wn2Q

≤C
�]

B

f
q
2

� 2
q
]
B

n∇wn2Q

=C |B|
1
σ3
�
1

|B|

]
B

fσ
3
� 1

σ3
]
B

n∇wn2Q ,

Thus we have�
1

|B|

]
B

|w|2σ
� 1

σ

= sup
1
|B|

U
B
|f |σ3=1

���� 1|B|
]
B

w2f

���� ≤ C |B| 1σ3 � 1

|B|

]
B

n∇wn2Q
�
.

Since q < Q∗, we have |B| = |B (y, r)| ≤ Crq, and so we obtain�
1

|B|

]
B

|w|2σ
� 1

2σ

≤ Cr
q
2σ3

�
1

|B|

]
B

n∇wn2Q
� 1

2

,

for all w ∈ Lip0 (B). Using the density of Lip0 (B) in W 1,2
0 (B), we finally obtain

(15) with σ = q
q−2 since q = 2σ

3.
Now recall that Q (x, ξ) is L2-hypoelliptic relative to the homogeneous Neumann

problem for the balls B (x, r), if we assume existence of weak solutions to the homo-
geneous Neumann problem for the balls B = B (x, r),�

Lu = f in B
nQu= 0 on ∂B

, (240)

where L = ∇3Q (x)∇, nQ = n3B (x)∇ with n the unit outward normal to ∂B, and
f ∈ W 1,2 (B) satisfies the compatibility condition

U
B
f = 0; and if we also assume

the natural hypoelliptic estimate

nunL2(B) ≤ Cr2 nfnL2(B) , (241)

for these weak solutions u to the above Neumann problem. Again, we will restrict
our statement and proof to the case where weak solution here is interpreted in the
classical W 1,2 sense, although the proof adapts readily to other notions of weak
solution.

Lemma 76 Suppose that Q (x, ξ) is L2-hypoelliptic relative to the homogeneous Neu-
mann problem for the balls B (x, r) in the classical W 1,2 sense. Then the Poincaré
inequality (17) holds.
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Proof. Recall that u ∈ W 1,2 (B) is a weak solution of the boundary value problem
(240) if (31) holds, i.e.

−
]
B

(∇v)3Q (x)∇u =
]
B

vf, for all v ∈W 1,2 (B) . (242)

Now given f ∈ W 1,2 (B), let u be the weak W 1,2 solution to the homogeneous
Neumann problem �

Lu = f − fB in B
nQu= 0 on ∂B

, (243)

where fB = 1
|B|
U
B
f is the average of f on B. With v = u in (242), we obtain]

B

Q (x,∇u) =
]
B

(∇u)3Q (x)∇u

=−
]
B

u (f − fB) ,

and so ]
B

Q (x,∇u) ≤ nunL2(B) nf − fBnL2(B) ≤ Cr2 nf − fBn
2
L2(B) (244)

by (241) with f replaced by f − fB. We now conclude using the vanishing mean
value of f , (242) with v = f − fB, the Cauchy-Schwarz inequality and finally (244),
that

nf − fBn2L2(B) =
]
B

(f − fB) f

=−
]
B

(∇f)3Q (x)∇u

≤
�]

B

Q (x,∇f)
� 1

2
�]

B

Q (x,∇u)
� 1

2

≤
�]

B

Q (x,∇f)
� 1

2 √
Cr nf − fBnL2(B) .

Dividing through by nf − fBnL2(B) yields (17) as required.

6.3 The noninterference balls A (x, r) and the reverse Hölder
condition

Recall the familyA of noninterference ballsA (x, r) =
Tn
j=1 (xj −Aj (x, r) , xj +Aj (x, r))

whereAj (x, r) =
U r
0
aj (x1 + t, x2, ..., xn) dt, and the familyK of subunit ballsK (x, r).

Proposition 36 shows that under the hypotheses of Theorem 15, A ⊂ K since A is
a general homogeneous space and the family of balls A satisfies the subrepresen-
tation inequality (90) with respect to the vector fields {Xj}nj=1, Xj = aj (x)

∂
∂xj
,

and the balls A (x, r). However, these properties hold under the following conditions
weaker than those assumed in Theorem 15; the vector fields X1 = ∂

∂x1
, Xj = aj ∂

∂xj
,

2 ≤ j ≤ n, are continuous, satisfy the noninterference Definition 14 and (40), and the
coefficients aj are Lipschitz continuous in x2, ..., xn uniformly in x1, and merely dou-
bling in the first variable x1 uniformly in x2, ..., xn. Indeed, we showed in subsection
5.1 that under these hypotheses, A is a homogeneous space adapted to the vector
fields X . Proposition 60 then yields the proportional subrepresentation inequality
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(182) for A, and finally Lemma 54 yields the standard subrepresentation inequality
(186).
Our next result shows that under these weaker hypotheses, the reverse implication

K ⊂ A holds if and only if the aj are reverse Hölder of infinite order in x1. The reader
is reminded that while the noninterference Definition 14 is precisely the size limiting
condition (91) for the noninterference balls A, Proposition 36 does not imply that
K ⊂ A, unless the aj are also reverse Hölder in the x1 variable, uniformly in the
other variables.

Proposition 77 Let X1 = ∂
∂x1
, Xj = aj

∂
∂xj
, 2 ≤ j ≤ n, be continuous vector

fields satisfying the noninterference condition 14, and with aj Lipschitz continuous
in x2, ..., xn uniformly in x1, and doubling in x1 uniformly in x2, ..., xn. Then the
following are equivalent:

1. A ∼= K ∼= hK ∼= K∗,
2. K ⊂ A,

3. aj is reverse Hölder of infinite order in x1 for 2 ≤ j ≤ n.

Proof. If aj is reverse Hölder in x1 for 2 ≤ j ≤ n, then the family of balls A is
equivalent to the family of subunit balls K by Proposition 36. Indeed, Definition
14 implies (91), and hB = B since the balls A (x, r) are rectangles. Remark 10 in
subsection 2.3 then yields A ∼= K ∼= hK ∼= K∗.
Conversely, if K ⊂ A, then since A (x, r) is doubling in r, we have for some

constant C0,
K (x, r) ⊂ C0A (x, r)

for all x ∈ Ω, 0 < r < r0, where C0A (x, r) denotes the rectangle centered at x
obtained by multiplying the side lengths of A (x, r) by C0. Now fix x ∈ Ω and r > 0.
Choose tj ∈ [0, r] so that

max
0≤t≤r

aj (x1 + t, x2, ..., xn) = aj (x1 + tj , x2, ..., xn) ,

and assume, in order to derive a contradiction, that the third property fails, i.e. for
some 2 ≤ j ≤ n,

mj ≡ aj (x1 + tj , x2, ..., xn) ≥ 2C1
1

r

] r

0

aj (x1 + t, x2, ..., xn) dt = 2C1
1

r
Aj (x, r) ,

where C1 is a sufficiently large multiple (related to the doubling assumption) of C0
to be chosen later. Since aj is Lipschitz in xj with constant βj , it follows that

aj (x1 + tj, x2, ..., xj−1, xj + s, xj+1, ..., xn) ≥
1

2
mj (245)

for 0 ≤ s ≤ mj

2βj
. Now define a piecewise differentiable curve γ (t), 0 ≤ t ≤ tj + r, by

γ (t) =

�
(x1 + t, x2, ..., xn) , 0 ≤ t ≤ tj�
x1 + tj , x2..., xj +

1
2mj (t− tj) , ..., xn

�
, tj ≤ t ≤ tj + r

.

For r ≤ 1
βj
and tj ≤ t ≤ tj + r,

0 ≤ 1
2
mj (t− tj) ≤

r

2
mj ≤

mj

2βj
,

131



and we conclude from (245) that

γ3j (t) =
1

2
mj ≤ aj (γ (t)) .

Thus γ (t) is subunit and

Kj (x, 2r) ≥
��γj (tj + r)− xj�� = r

2
mj ≥ C1Aj (x, r) > C0Aj (x, 2r) ,

by doubling, with C1
C0
chosen to exceed the doubling constant. This yields the desired

contradiction that K (x, 2r) is not contained in C0A (x, 2r). Therefore the second
statement implies the third, and completes the proof of Proposition 77.

6.4 Reverse Hölder examples
In this subsection of the appendix we construct for every 0 < ε < 1 a nonnegative
function aε on the interval I0 = [−1, 1] that is Lipschitz continuous, doubling with
doubling exponent d = 3, and that satisfies

aε ∈RHp, p <
1

1− ε
,

aε /∈RH∞.

We can use such a weight as one of the aj in Theorem 19, say aj (x) = aε (x1), and
by Proposition 77, the noninterference balls A (x, r) are not equivalent to the sub-
unit balls K (x, r), thus providing an example of a homogeneous space structure not
equivalent to the subunit balls of Fefferman and Phong that leads to a subellipticity
theorem. Recall that w is doubling with exponent d and constant C if] x+r

x−r
w (t) dt ≤ C

�r
s

�d ] x+s

x−s
w (t) dt, 0 < s < r, (x− r, x+ r) ⊂ I0. (246)

The weight function

wε (t) =
�
1 + t2

� ε−1
2 , −∞ < t <∞,

satisfies the doubling condition with exponent d = 1 and constant C ≈ 1
ε for ε > 0,

has bounded derivative if ε ≤ 2, satisfies the RHp condition for p < 1
1−ε , and fails

to satisfy the RH∞ condition (consider the sequence of intervals [0, R) as R →∞).
Our goal is to construct a function aε(t) with similar properties on the finite interval
|t| ≤ 1.
Note that both the doubling and RHp conditions are invariant under dilations,

translations and multiplication by constants. For n = 1, 2, . . ., let

αn =
1

n!
, βn = nα

2
n =

n

(n!)2
,

and define

an,ε (t) = βnwε

�
t− αn
βn

�
for fixed ε with 0 < ε < 1. Then an,ε(t) is a doubling weight with exponent d = 1
uniformly in n, i.e., its doubling constant C in (246) with d = 1 is independent of
n (but dependent on ε of course). Let φ (t) be a smooth, nondecreasing function
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defined for t ∈ [0,∞) with 0 ≤ φ (t) ≤ 1, φ(t) = 0 if t ≤ 1/4, φ (t) = 1 if t ≥ 3/4, and
φ3 (t) ≤ 3. Now let aε (t) be the even function defined for 0 ≤ t ≤ 1 by

aε (t) = t
2 +

∞[
n=1

an,ε (t)φ

�
t

αn

�
.

Note that the weight w (t) = t2 has doubling exponent d = 3.
We claim that on the interval |t| ≤ 1, aε (t) is a Lipschitz continuous doubling

weight with exponent d = 3 which satisfies the RHp condition for p < 1
1−ε , and fails

to satisfy RH∞.

Lipschitz Continuity Let us first show that aε (t) is Lipschitz continuous on |t| ≤
1. Clearly, for 0 ≤ t ≤ 1,

a3ε (t) = 2t+
∞[
n=1

(ε−1) t− αn
βn

+
1 +

�
t− αn
βn

�2, ε−3
2

φ

�
t

αn

�
+
∞[
n=1

an,ε (t)
1

αn
φ3
�
t

αn

�
,

and so

|a3ε (t)| ≤ 2 +
∞[
n=1

+
1 +

�
t− αn
βn

�2, ε−2
2

+
∞[
n=1

3
βn
αn
.

Now use the fact that |t− αn| ≥ |αn| /4 except for one value of n, in which case we
will use the simple estimate+

1 +

�
t− αn
βn

�2,(ε−2)/2
≤ 1.

We then obtain

|a3ε (t)| ≤ 2 + 1 +
∞[
n=1

�
1

4
(n− 1)!

�ε−2
+ 3

∞[
1

1

(n− 1)! ≤ C

when 0 ≤ t ≤ 1. It follows that aε (t) is Lipschitz continuous on |t| ≤ 1.
Doubling with exponent d = 3 Now let us show that aε (t) satisfies the doubling
condition (246) with d = 3. Without loss of generality it is enough to show that for
0 < ε < 1, there is a positive constant Cε such that] x+r

x

aε (t) dt ≤ Cε
�r
s

�3 ] x+s

x

aε (t) dt, 0 ≤ x < x+ s < x+ r ≤ 1,

Given 0 ≤ x < x+ s < x+ r ≤ 1, let m be such that αm
4 < x+ r ≤ αm−1

4 . We now
compute that] x+r

x

aε (t) dt≤
] x+r

x

t2dt +
∞[
n=m

] x+r

x

an,ε (t) dt (247)

=
(x+ r)3 − x3

3
+

∞[
n=m

βn

] x+r

x

wε

�
t− αn
βn

�
dt

= r

�
x2 + xr +

1

3
r2
�
+
∞[
n=m

β2n

] x+r−αn
βn

x−αn
βn

�
1 + τ2

� ε−1
2 dτ
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≤ r (x+ r)2 + Cε
∞[
n=m

β2n

��
x+ r − αn

βn

�ε
−
�
x− αn
βn

�ε�

≤ r (x+ r)2 + Cεr
∞[
n=m

β2−εn ≤ C 3εr (x+ r)
2

since
S∞
n=m β2−εn =

S∞
n=m

�
nα2n

�2−ε ≤ C �mα2m
�2−ε ≤ Cα2m for m large, while] x+s

x

aε (t) dt ≥
] x+s

x

t2dt =
(x+ s)

3 − x3
3

≥ 1
6
s (x+ s)2 .

Combining these estimates yields] x+r

x

aε (t) dt ≤ 6C 3ε
r (x+ r)

2

s (x+ s)2

] x+s

x

aε (t) dt ≤ Cε
�r
s

�3 ] x+s

x

aε (t) dt,

as required.

Reverse Hölder of order p < 1
1−ε Suppose that p < 1

1−ε . Then the weights t
2

and an,ε (t) are in RHp uniformly in n, say with constant Cp,ε. To show that

aε = t
2 +

∞[
n=1

an,ε (t)φ (t/αn) ∈ RHp,

fix an interval I = [u, v] ⊂ [0, 1]. Let m be such that αm
4 < v ≤ αm−1

4 so that
aε (t) = t

2 +
S∞
n=m an,ε (t)φ (t/αn) for t ∈ [u, v]. Then�
1

|I|

]
I

|aε|p
� 1

p

≤
�
1

|I|

]
I

t2p
� 1

p

+
∞[
n=m

�
1

|I|

]
I

|an,ε|p
� 1

p

≤Cp,ε

+
1

|I|

]
I

t2 +
∞[
n=m

1

|I|

]
I

an,ε

,

=Cp,ε
1

|I|

]
I

aε.

Failure of RH∞ Let Im = [0,αm]. Then

1

|Im|

]
Im

aε (t) dt =
1

αm

] αm

0

aε (t) dt ≤ C3εα2m

by (247) with x = 0. But aε (αm) ≥ βmwε (0)φ (1) = mα2m, and combining estimates
we obtain

sup
t∈Im

aε (t) ≥ aε (αm) ≥ mα2m ≥
m

C 3ε

1

|Im|

]
Im

aε (t) dt,

which shows that aε fails to satisfy RH∞.

6.5 Product reverse Hölder
We will now show that (225) holds if either of the following two conditions is satisfied:

either each aj satisfies the RH∞ condition in each variable xi, i 9= 1, j, uniformly
in the other variables, i.e., there is a constant C such that for all i, j = 2, . . . , n with
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i 9= j and all one-dimensional intervals I which contain xi,

aj(x1, . . . , xn) ≤ C
1

|I|

]
I

aj(x1, . . . , xi−1, zi, xi+1, . . . , xn) dzi, i, j ≥ 2, i 9= j,
(248)

uniformly in xk for k 9= i,
or the Bj (x, r) satisfy a strong non-interference condition relative to the boxes

CB (x, r) of the form

r

#
sup

z:|z1−x1|≤Cr; |zk−xk|≤CBk(x,r),k≥2

����∂aj∂zi
(z)

����
$
Bi (x, r) (249)

≤iC0Bj (x, r) , i, j ≥ 2, i 9= j,

for all x and r and a suitably large geometric constant C. See Remark 5 for the
interpretation of sup in (249). Note that we never consider the partial derivative
∂/∂z1 in (249). We will suppose that all Bj (x, r) > 0 if r > 0, which is of course
implied by the flag condition 10.
For given j, x and r, the values of i in (249) can be restricted to those i which

occur earlier than j in the ordering of the Bj (x, r) since by Lemma 65 the condition
automatically holds for the later i values. Of course the ordering generally varies with
x and r. Note also that the RH∞ condition (248) implies that there is a constant C
such that if i ≥ 2 and I is any one-dimensional interval which contains xi, then

Aj (x, r) ≤
C

|I|

]
I

Aj ((x1, . . . , xi−1, zi, xi+1, . . . , xn), r) dzi, i 9= j. (250)

To show (250) for example when i = 2, j 9= 2, note that by (248) and Fubini’s
theorem,

Aj (x, r) =

] r

0

aj(x1 + t, x2, . . . , xn) dt ≤
] r

0

�
C

|I|

]
I

aj(x1 + t, z2, x3, . . . , xn) dz2

�
dt

=
C

|I|

]
I

Aj ((x1, z2, x3, . . . , xn), r ) dz2.

Similar estimates hold for Cartesian products of two or more intervals in different
coordinates.
As will be apparent from the proof that (248) implies (225), instead of assuming

(248) we actually only need a weak form of (250), “weak” in the sense that the
average on the right side of (250) can be restricted to certain values of i with i ≥ 2.
In fact, if j occurs as j = jk in the ordering for the Bc (x, r), we only need to assume
(250) for i = j2, . . . , jk−1 and not for i = 1, jk, . . . , jn. We need the following two
lemmas.

Lemma 78 If either (248) or (249) holds and C ≥ 1, then

Bj (x, r) ≈ max
z:|z1−x1|≤Cr; |zi−xi|≤CBi(x,r),i≥2

Aj (z, r)

with constants of equivalence that are independent of x and r.

Proof. The proof is similar to that of Lemma 66. The fact that the left side of the
conclusion is at most the right side is obvious from the definition of Bj (x, r). To
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show the opposite inequality (with an appropriate constant factor), suppose we have
the natural order and x = 0. Denoting Bj (r) = Bj(0, r), we have by definition that

Bj (r) = max
|ξi|≤Bi(r)

Aj
�
(0, ξ2, . . . , ξj−1, 0, . . . , 0), r

�
if j ≥ 3 and B2 (r) = A2(0, r).

Let z = (z1, . . . , zn) with |z1| ≤ Cr and |zi| ≤ CBi (r) for i ≥ 2. By doubling in the
first variable,

Aj (z, r) ≤ cAj ((0, z2, . . . , zn), r) .
If j ≥ 3, the right side is at most

c
��Aj ((0, z2, . . . , zn), r)−Aj �(0, z∗2 , . . . , z∗j−1, 0 . . . , 0), r���
+cAj

�
(0, z∗2 , . . . , z

∗
j−1, 0, . . . , 0), r

�
,

for z∗2 , . . . , z
∗
j−1 to be chosen. If j ≥ 3 and Aj(·, r) satisfies (248), we pick z∗2 =

z2, . . . , z
∗
j−1 = zj−1, obtaining

Aj (z, r)≤ crCL
n[
i=j

|zi|+ cAj ((0, z2, . . . , zj−1, 0, . . . , 0), r)

≤ crCL
n[
i=j

CBi (r) + cAj ((0, z2, . . . , zj−1, 0, . . . , 0), r)

≤ crCL(n− 1)C(1 + rCL)n−2Bj (r)
+cAj((0, z2, . . . , zj−1, 0, . . . , 0), r)

by Lemma 65. By (248), the last term on the right, cAj ((0, z2, . . . , zj−1, 0, . . . , 0), r),
is bounded by

c3Tj−1
2 CBi (r)

]
|ξi|≤CBi(r)

Aj
�
(0, ξ2, . . . , ξj−1, 0, . . . , 0), r

�
dξ2 . . . dξj−1

≤ c33Tj−1
2 Bi (r)

]
|ξi|≤Bi(r)

Aj
�
(0, ξ2, . . . , ξj−1, 0, . . . , 0), r

�
dξ2 . . . dξj−1

since RH∞ implies doubling. The last expression is clearly at most

c33 max
|ξi|≤Bi(r)

Aj
�
(0, ξ2, . . . , ξj−1, 0, . . . , 0), r

�
= c33Bj (r) ,

which proves the lemma in this case.
If j ≥ 3 and we instead assume the strong non-interference condition (249), we

pick z∗2 = . . . = z
∗
j−1 = 0 to get

Aj (z, r)≤ cr
n[
i=2

#
sup

|yk|≤|zk|

����∂aj∂yi
(0, y2, . . . , yn)

����
$
|zi|+ cAj(0, r)

≤ cr
n[
i=2

#
sup

|yk|≤|zk|

����∂aj∂yi
(0, y2, . . . , yn)

����
$
CBi (r) + cAj(0, r)

≤ cr
n[

i=2; i9=j

#
sup

|yk|≤|zk|

����∂aj∂yi
(0, y2, . . . , yn)

����
$
CBi (r) + crCLCBj (r) + cAj (r)

≤ c(n− 2)CC̃0Bj (r) + crCLCBj (r) + cBj (r) ≤ c3Bj (r) ,
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and the proof is again complete (recall Remark 5 once more).
In the remaining case j = 2, we have the better estimate

max
|z1|≤Cr; |zi|≤CB2(r),i≥2

A2 (z, r) ≤ cB2 (r)

by (229) without requiring either (248) or (249). This completes the proof of the
lemma.
We next show that either (248) or (249) implies a sort of RH∞ condition for

the Aj (x, r). In fact, while each Bj (x, r) is by definition the maximum of filled-
out values of Aj(·, r), it turns out that Bj (x, r) is no more than the corresponding
integral average of Aj(·, r), assuming that (248) or (249) holds.

Lemma 79 Suppose that (248) or (249) holds and that the Bj (x, r) are defined in
the order Bjk (x, r) , k = 2, . . . , n. For each jk, there are intervals

Ij ⊂ [xj −Bj (x, r) , xj +Bj (x, r)] , j = j2, . . . , jk−1,

depending on k, x and r, such that

|Ij | ≈ Bj (x, r) and Bjk (x, r) ≈
1

|I|

]
I

Ajk (z, r) dzj2 · · · dzjk−1 |zi=xi,i=1,jk,...,jn ,

where I = Ij2 ×· · ·× Ijk−1 . Also, if C ≥ 1 and J = Jj2 ×· · ·×Jjk−1 for any intervals
Jj which satisfy

Ij ⊂ Jj ⊂ [xj − CBj (x, r) , xj + CBj (x, r)] , j = j2, . . . , jk−1,

then I may be replaced by J in the average above. If in addition ajk (z) satisfies the
doubling condition in each variable zi, i 9= jk (which is automatic if (248) holds),
then the requirement that Ij ⊂ Jj can be dropped, i.e., we have

Bjk (x, r) ≈
1

|J |

]
J

Ajk (z, r) dzj2 · · · dzjk−1 |zi=xi,i=1,jk,...,jn (251)

for any J = Jj2 × · · · × Jjk−1 which satisfies

Jj ⊂ [xj − CBj (x, r) , xj + CBj (x, r)] and |Jj | ≥ cBj (x, r) , c > 0. (252)

Proof. Assume first that (249) holds. When k = 2, the results follow from (229)
even without assuming (249). For k ≥ 3, we give the proof for the case x = 0 with
the natural order. For j ≥ 3, the inequality

Bj (r) ≥
1

|I|

]
I

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 · · · dzj−1

is obvious from the definition of Bj (r) for any I = I2 × . . . × Ij−1 with Ii ⊂
[−Bi (r) , Bi (r)]. Now pick z̄2, . . . , z̄j−1 with |z̄i| ≤ Bi (r) and

Bj (r) = Aj ((0, z̄2, . . . , z̄j−1, 0 . . . , 0), r) .

For i = 2, . . . , j − 1, let Ii be an interval with Ii ⊂ [−Bi (r) , Bi (r)], z̄i ∈ Ii, and
|Ii| = εBi (r) for ε to be chosen. Letting I = I2 × . . .× Ij−1, we have����Bj (r)− 1

|I|

]
I

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 · · · dzj−1
����
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≤ 1

|I|

]
I

|Aj ((0, z̄2, . . . , z̄j−1, 0, . . . , 0), r)−Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r)| dz2 · · · dzj−1

≤ 1

|I|

]
I

r

j−1[
i=2

#
sup

|yk|≤Bk(r)

����∂aj∂yi
(0, y2, . . . , yn)

����
$
|Ii| dz2 · · · dzj−1

= r

j−1[
i=2

#
sup

|yk|≤Bk(r)

����∂aj∂yi
(0, y2, . . . , yn)

����
$
εBi (r) ≤ (n− 2)εC̃0Bj (r)

by (249). The first part of the lemma now follows by picking ε with (n−2)εC̃0 = 1/2
and absorbing the last term.
To prove the second statement, still assuming that (249) holds, let J = J2×· · ·×

Jj−1 for intervals Ji with

Ii ⊂ Ji ⊂ [−CBi (r) , CBj (r)] , i = 2, . . . , j − 1.

Here C is fixed with C ≥ 1. Lemma 78 gives

Bj (r) ≥ c
1

|J |

]
J

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 · · · dzj−1

for some c > 0, and the opposite inequality follows from the first statement of the
lemma since Ii ⊂ Ji and |Ji|, |Ii| ≈ Bi (r). Finally, in caseAj ((0, z2, . . . , zj−1, 0, . . . , 0), r)
satisfies the doubling condition in z2, . . . , zj−1, we have for any J of the type described
in the third statement that

1

|J |

]
J

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 · · · dzj−1 ≈

1Tj−1
2 Bi (r)

]
|zi|<Bi(r)

Aj ((0, z2, . . . , zj−1, 0, . . . , 0), r) dz2 · · · dzj−1.

Hence, the third statement follows from the second one, and the proof is complete in
case (249) holds.
The proof is simpler in case the RH∞ condition (248) holds. In fact, the conclu-

sions then follow easily from Lemma 66, Lemma 78 and condition (248). The intervals
Ij in the first statement can be taken to be Ij = [xj −Bj (x, r) , xj +Bj (x, r)]. The
doubling condition which is assumed in the last part of the lemma is automatically
true by (248). This completes the proof of Lemma 79.
In Lemma 79, it is always possible to choose Jj = [xj −Bj (x, r) , xj +Bj (x, r)],

obtaining as a corollary that

Bjk (x, r) ≈
1T

j=j2,...,jk−1 Bj (x, r)

]
|zj−xj |≤Bj(x,r)

Ajk (z, r) dzj2 . . . dzjk−1 |zi=xi,i=1,jk,...,jn .

In this integral average, the fixed variables z1, zjk , . . . , zjn that are chosen above to be
x1, xjk , . . . , xjn , respectively, can instead be chosen to be any values y1, yjk , . . . , yjn
with |y1 − x1| ≤ r and |yj − xj | ≤ Bj (x, r) , j = jk, . . . , jn, provided r is small. The
proof is like the one given in the Remark after (229). It follows that we may also
average over such values y1, yj , . . . , yn. In this way we obtain that if either (248) or
(249) holds, then

Bjk (x, r) ≈
1

r
Tn
2 Bi (x, r)

]
|z1−x1|≤r; |zi−xi|≤Bi(x,r)

Ajk (z, r) dz1 . . . dzn. (253)

Finally, by combining (253) with Lemma 78, we immediately obtain the first of our
two main results of this subsection:
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Proposition 80 If either (248) or (249) holds, then so does (225).

We now formulate a variant of Theorem 13 that uses the noninterference condition
(249) in place of the reverse Hölder condition (248).

Theorem 81 Suppose for 1 ≤ j ≤ n that aj (x) is nonnegative and Lipschitz con-
tinuous on a domain Ω ⊂ Rn. Let B = {B (x, r)} denote the family of flag balls
constructed in subsubsection 2.2.1 and suppose that the strong non-interference con-
dition (249) holds. Assume as well that each aj (x) is reverse Hölder of infinite order
in x1 uniformly in x2, ..., xn, and satisfies the A∞ condition in each variable xi with
i 9= j, uniformly in the remaining variables as in (234). Then the set X of vector
fields Xj = aj ∂

∂xj
, 1 ≤ j ≤ n, is subelliptic in Ω if and only if X satisfies the flag con-

dition 10 in Ω. In the case that the flag condition 10 holds in Ω, there is Q ∈ [2,∞)
depending only on the Lipschitz and reverse Hölder constants of the aj such that X
is Lq-subelliptic in Ω for all q > Q.

6.6 The noninterference conditions
We will now show that the noninterference condition (217) (or that in Definition
14) is a corollary of the strong noninterference condition (41): there are positive
constants C0 and r0 such that for all x and all r with 0 < r ≤ r0,

r sup
z∈A(x,r)

����∂ai∂zj
(z)

����Aj (x, r) ≤ C0Ai (x, r) , i, j ≥ 2. (254)

In case n = 2, condition (254) holds vacuously. In case n > 2 and all ai are equal,
it automatically holds because of the Lipschitz continuity of ai in x2, . . . , xn. In any
case, (254) holds for i = j by Lipschitz continuity.

Lemma 82 Suppose that each ai (x) satisfies the doubling condition in x1 uniformly
in x2, . . . , xn, with doubling constant Cd, and is Lipschitz continuous in x2, . . . , xn
uniformly in x1. If (254) holds, then (217) (or Definition 14) holds, i.e. there is a
positive constant Cc and r0 such that for 0 < r ≤ r0 and 2 ≤ i ≤ n,

C−1c Ai (x, r) ≤ Ai (z, r) ≤ CcAi (x, r) , z ∈ A (x, r) . (255)

Proof. For ε > 0, consider the ”flattened” rectangle

Aε (x, r) = (x1 − r, x1 + r)×
n\
i=2

(xi − εAi (x, r) , xi + εAi (x, r)) .

We begin by showing that (254) implies the following weaker form of (255), which
requires comparability only over the flattened rectangle Aε (x, r); there are positive
constants Cc, ε and r0 such that for 0 < r ≤ r0 and 2 ≤ i ≤ n,

C−1c Ai (x, r) ≤ Ai (z, r) ≤ CcAi (x, r) , z ∈ Aε (x, r) . (256)

To see this, fix Aε (x, r) with ε and r to be chosen in a moment. For simplicity,
suppose that x = 0. If z ∈ Aε (0, r), then by doubling of ai in the first variable,

Ai (z, r) ≈ Ai ((0, z2, . . . , zn) , r) ,
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with constants of equivalence Cd and C
−1
d . Moreover,

|Ai ((0, z2, . . . , zn) , r)−Ai (0, r)|≤
] r

0

|ai (t, z2, . . . , zn)− ai (t, 0, . . . , 0)| dt

≤
] r

0

 n[
j=2

sup
ξ∈A(0,r)

����∂ai∂ξj
(ξ)

���� |zj |
 dt

≤ r
n[
j=2

sup
ξ∈A(0,r)

����∂ai∂ξj
(ξ)

���� εAj (0, r) ,
≤

n[
j=2

εC0Ai (0, r) = (n− 1) εC0Ai (0, r) ,

by (254) if r ≤ r0. If now ε is chosen so that ε (n− 1)C0 = 1
2 , we may absorb the

last term to obtain

1

2
Ai (0, r) ≤ Ai ((0, z2, . . . , zn) , r) ≤

3

2
Ai (0, r) .

Combining estimates gives

1

2Cd
Ai (0, r) ≤ Ai (z, r) ≤

3Cd
2
Ai (0, r) ,

which is (256) as claimed. The proof of the lemma is now completed by the following
remark.

Remark 28 The flattened comparability condition (256) implies (255). Indeed, sup-
pose flattened rectangles Aε (x, r) and Aε (y, r) are adjacent, i.e. x1 = y1, and inter-
sect, say

z ∈ Aε (x, r) ∩Aε (y, r) .

Then applying (256) first to z ∈ Aε (x, r), and then to z ∈ Aε (y, r), we obtain

Ai (x, r) ≈ Ai (z, r) ≈ Ai (y, r) , 2 ≤ i ≤ n. (257)

There is an integer N , depending only on ε and the dimension n, with the following
property. There are points y1, ..., yN in A (x, r) with yj1 = x1, 1 ≤ j ≤ N , such that

A (x, r) ⊂ ∪Nj=1Aε
�
yj , r

�
. (258)

The full comparability condition (255) follows easily from (256), (257) and (258)
since any two points u, v in A (x, r) lie in flattened rectangles Aε

�
yj , r

�
, Aε

�
yk, r

�
re-

spectively, which can be connected by a chain of adjacent flattened rectangles Aε
�
yc, r

�
of length at most N .

We now demonstrate that the noninterference condition in Definition 14 is auto-
matic if Ai = Aj for 2 ≤ i, j ≤ n.

Lemma 83 Suppose that each ai (x) satisfies the doubling condition in x1 uniformly
in x2, . . . , xn, with doubling constant Cd, and is Lipschitz continuous in x2, . . . , xn
uniformly in x1. Suppose moreover that a1 = 1 and ai = aj for 2 ≤ i, j ≤ n. Then

C−1c Aj (x, r) ≤ Aj (z, r) ≤ CcAj (x, r) , z ∈ A (x, r) ,

for 2 ≤ j ≤ n and r small.
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Proof. For 2 ≤ j ≤ n, let aj = a and Aj = A. Suppose x = 0 and consider the
integral curve γ (t) defined by γ (0) = 0 and γ3 (t) = (1, a (γ (t)) , 03). Then

γ (r) =

�
r,

] r

0

a (γ (t)) dt, 03
�
,

and we have the estimate����] r

0

a (γ (t)) dt−A (0, r)
����= ����] r

0

[a (γ (t))− a (t, 0, 03)] dt
����

≤
] r

0

����a�t,] t

0

a (γ (s)) ds, 03
�
− a (t, 0, 03)

���� dt
≤ r

��∇3a��∞ ] r

0

a (γ (s)) ds,

where ∇3 =
�

∂
∂x2
, ..., ∂

∂xn

�
. Since a is Lipschitz in x2, ..., xn, we conclude that for r

sufficiently small, depending only on
��∇3a��∞,

1

2
A (0, r) ≤

] r

0

a (γ (t)) dt ≤ 2A (0, r) .

Thus if 0 ≤ z2 ≤ 1
2A (0, r), there is t ∈ [0, r] such that the point z = (t, z2, 03) lies on

the image of the integral curve γ (t), 0 ≤ t ≤ r, and a similar argument shows that

1

2
A (z, r) ≤

] r

0

a (γ (t)) dt ≤ 2A (z, r) .

The case −12A (0, r) ≤ z2 ≤ 0 is similar and omitted. Using the doubling of A (x, r)
in r we conclude that

A (0, r) ≈ A ((0, z2, 03) , r) , for |z2| ≤
1

2
A (0, r) .

Repeating this argument with x = (0, z2, 03) and |z3| ≤ 1
2A ((0, z2, 0

3) , r), we obtain

A (0, r) ≈ A ((0, z2, z3, 03) , r) , for |z2| , |z3| ≤
1

2
A (0, r) .

Continuing in this way, we finally obtain

A (0, r) ≈ A (z, r) , for z ∈ A 1
2 (x, r) . (259)

This establishes the flattened comparability condition (256), and Remark 28 now
completes the proof of the lemma.

6.7 Other notions of weak solution
We now discuss alternative definitions of a weak solution of the general divergence
form equation (22),

Lu ≡ Lu+HRu+ S3Gu+ Fu = f +T3g. (260)

Recall that a classical weak solution to this equation is a function u ∈W 1,2 (Ω) such
that (102) holds, i.e.

−
]
(∇u)3 B∇w +

]
(HRu)w +

]
uGSw +

]
Fuw =

]
fw +

]
gTw, (261)
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for all test functions w ∈W 1,2
0 (Ω). As pointed out in Remark 12, we can make sense

of this using the usual Sobolev embedding theorem,W 1,2 (Ω) ⊂ Lqncoc (Ω) (qn = 2n
n−2 if

n ≥ 3, qn <∞ if n = 2), for u ∈W 1,2 (Ω) and f, F ∈ L
n
2

coc (Ω) and g,G,H ∈ Lncoc (Ω).
We can also consider other notions of weak solution to (260) by requiring that u
belong to a Banach space B, and that w range over the dual Banach space B30, where
the duality pairing is given by

ku,wl =
]
Ω

u (x)w (x) dx+

]
Ω

(∇w) (x)3 P (x)∇u (x) dx,

for some nonnegative semidefinite matrix P (x) � cB (x), where B (x) is the coeffi-
cient matrix of L. The coefficients and data in (260) must then be in appropriate
spaces depending on the Banach space B and the matrix P (x).
For example, we may take B = W 1,2

Q (Ω) and P (x) = Q (x) where the quadratic
form Q (x, ξ) = ξ3Q (x) ξ and W 1,2

Q (Ω) denotes the completion of Lip1 (Ω) under the
norm

nwnW1,2
Q (Ω) =

�]
Ω

�
|w|2 + n∇wn2Q

�� 1
2

.

The integrals in (261) then make sense for ξ3B (x) ξ ≈ Q as in (27) using the Sobolev
embedding (15), together with the assumptions

nfn
L
σ3
2
coc(Ω)

, ngnLσ3coc(Ω) <∞,

and
nFn

L
σ3
2
coc(Ω)

, nGnLσ3coc(Ω) , nHnLσ3coc(Ω) <∞.

Note that the weak solution u is permitted to be a much more general object here,
namely a sequence of Lipschitz functions Cauchy in W 1,2

Q norm.
We close this subsection with a general comment, not to be taken too literally.

There are analogues of our main theorems for weak solutions u ∈ W 1,2
Q (Ω) in the

sense discussed above, and we conjecture that with this notion of weak solution, and
under the hypotheses of our main theorems, Q is both Lq-subelliptic relative to the
homogeneous Dirichlet problems for the balls B (x, r), and L2-hypoelliptic relative to
the homogeneous Neumann problems for the balls B (x, r) (see subsubsection 1.1.1
for terminology).

6.8 Alternate methods of proof
We now discuss alternate methods of proof of some of the results in this paper.
First, it should be mentioned that both of our extensions, Theorems 13 and

15, of Hörmander’s commutation theorem, can be proved without recourse to our
generalization, Theorem 7, of the subellipticity theorem of Fefferman and Phong.
Indeed, the proofs of the sharp versions, Theorems 18 and 19, use Theorem 6 with
flag and noninterference balls, and do not rely on subunit balls at all.
Second, it is possible to use the method of Bombieri (Lemma 3 in [31]) to bridge

the gap at β = 0 in the Moser iteration in section 3, rather than using bounded
mean oscillation and the John-Nirenberg theorem. The idea is to use the arguments
in Lemmas 62 and 63 to create ”accumulating sequences of Lipschitz cutoff function-
s” in arbitrarily thin annuli of the form A (x, s) \ A (x, t) and t

rB (x, r) \
s
rB (x, r)

respectively, for 12r < s < t ≤ r. The details are left to the interested reader.
Third, it is possible to prove the basic Lemma 59 for the noninterference balls

A (x, r) by adapting Franchi’s method [8] of varying the driving parameters u =
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(u2, ..., un) for fixed initial point x in the integral curves γu (x, t) in subsubsection
5.1.1. However, in dealing with the flag balls B (x, r) it is convenient, if not necessary,
to instead vary the initial points x for an appropriately fixed driving parameter u in
the integral curves γu (x, t).
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