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Abstract: Convolutional neural network (CNN) models are widely applied in various areas including image 
classification, machine translation, autonomous driving, natural language processing, face recognition, 
recommendation systems, among others. This work investigated and compared different deep convolutional 
neural network models for image classification on a custom dataset. The models were trained on a dataset 
composed of seven image classes. The images were collected from various sources and a dataset for training the 
CNN models was created. The images included fruits, vegetables, and chocolates, which are considered poisonous 
to dogs for which Labrador Retrievers are used as a case study. Among the trained models, the Xception model 
showed the best performance, with a testing accuracy of 95%. Other notable models with high performance 
included InceptionV3, InceptionResNetV2, MobileNetV2 and VGG-16 with testing accuracy of 93.5%, 94.4%, 
92.0% and 91.5% respectively. The trained models were able to easily recognize the food classes that are 
considered poisons for Labrador Retrievers on independent user images, with very high accuracy. 
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1. Introduction 
 

Despite constant efforts for raising awareness 
about pet poisons, pet poison hotlines still show an 
alarming number of yearly pet poisoning cases. In 
2021, the Animal Poison Control Center (APCC) 
reported that the poisoning calls they received from 
the US increased by over 22 %. Poisoning cases were 
attributed to variety of factors including gardening 
products and toxicity of essential oils [1]. One of the 
most common and dangerous poisoning causes are 
foods that are safe for humans, but toxic for pets. This 
is because such foods would not seem intuitively 
poisonous. According to the APCC, food products 
where in the third position, accounting for more than 
12% of the cases [1]. 

To limit the scope of this project, only foods that 
are poisonous to Labrador Retrievers and safe to 
human beings are tackled and detected via Artificial 
Intelligence (AI) algorithms. Specifically, we chose to 

detect chocolate, fresh mushroom, grapes, leeks, 
unripe tomatoes, and avocados. 

Neural networks in general have been used to study 
a variety of applications [2-7]. With the evolution of 
this field, deep convolutional neural networks have 
gained significant attention in recent years for their 
outstanding image recognition and classification 
performance. Deep learning is a form of machine 
learning where a deep neural network, made up of 
many different layers with many different nodes, is 
used. With automatic feature extraction, deep 
convolutional neural network can classify new images 
based on the trained network. However, such training 
requires large labeled datasets. In this project, we 
collected images from four different web search 
engines: Google, Yahoo, DuckDuckGo and Bing. The 
images were then selected, compiled and labeled. 
Since some food ingredients are difficult to detect 
visually without any chemical test, only images which 
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have foods that can be visually detected were selected 
for training our neural network models.  

The current work presents the performance of an 
architected model trained on the dataset collected, and 
compared to some reputable selected convolution 
neural network models. The models compared include 
LeNet, Resnet, VGG-16 and AlexNet. The goal of 
these models is to identify if the food in the input 
image has one of the seven poisonous foods and alert 
the user if it does. The dataset collected was split into 
three parts and were used for training, validation and 
testing, respectively. Each food class was represented 
by about 500 images in the training data and  
100 images in the validation and testing data. 

 
 

2. Methods 
 
The study focused on applying a custom 

convolutional network model alongside state of-the-
art deep convolutional neural network models to 
classify images of selected food and fruits, which were 
collected from numerous online sources. The models 
investigated included models inspired by AlexNet, 
LeNet, VGGnet and Residual network models. The 
models were realized using the Keras API in Python 
and run on Google Colab. A brief description of each 
individual method is discussed in the following 
sections.  

 
 

2.1. Customized CNN  
 

The customized convolutional neural network 
applied in this work, consisted of two convolutional 
layers, two maxpooling layers, a flattened layer, a 
dense layer and a softmax output layer. The first 
convolutional layer had an input size of 224 × 224 × 
3, 32 filters, kernel size of 6 × 6 and a ReLU activation 
unit and this was followed by a maxpooling layer of 
size 2×2. The second convolutional layer consisted of 
64 filters, a kernel size of 3 × 3 and a ReLU activation 
unit followed by a 2 maxpooling layer. Then a 
flattened layer was added, which was followed by a 
dense layer of 128 units and a softmax output layer. 

 
 

2.2. LeNet 
  
Originally presented in Ref. [8] for the purposes of 

handwritten digit recognition, LeNet-5 also serves as 
a valid but relatively poor image recognition neural 
network architecture. The architecture is structured as 
follows. First, the images are resized to 32 × 32 and 
re-scaled. Traditionally, the images are to be 
normalized such that a white pixel has a value of -0.1 
and a black pixel that of 1.175. These images are 
convolved with six 5 × 5 filters with a stride of 1 to 
produce six 28 × 28 feature maps. These feature maps 
are sub-sampled with a 2 × 2 window and a stride of  
2 that takes the average of the pixel values in a 

window. The resulting 14 feature maps are convolved 
with 16 5 × 5 filters with a stride of 1. The feature maps 
are again sub-sampled using average pooling filters of 
the same size, as previously done. The 5 × 5 feature 
maps of the previous layer are flattened and 
individually connected to a dense layer of 120 neurons 
and passed on an 84-neuron layer before being sent to 
the classifying output layer, which in this case has 
seven neurons. The tanh function served as the 
activation function for all layers except the last which 
uses the sigmoid function. An implementation of 
LeNet-5 was developed in Google Colab and trained 
to identify seven classes of food that are poisonous to 
Labradors. 
 
 
2.3. ResNet 
 

Residual neural network (ResNet) models were 
developed for realizing neural network models with 
considerable depth, that provide a reasonable model 
complexity, and that are easy to train. Moreover, deep 
and complex neural network architectures are notably 
difficult to train [9]. Deeper networks have been 
reported to yield better performance than their shallow 
counterparts due to their ability to extract high level 
features from the input data, enabling them to 
significant improvement in the model accuracy. 
However, it must be noted that far too many additional 
layers have also been noted to degrade model 
performance [9]. Nevertheless, the residual networks 
have been developed and proposed as powerful models 
for image classification [10].  

There are various ResNet model formulations, and 
their general architecture is characterized by internal 
residual blocks, that are key to creating deeper neural 
network architectures with lower complexity. In this 
study, two state-of-the-art residual networks, 
ResNet50 and ResNet50V from Keras API were 
applied. The input image data was pre-processed as 
required in each case. Pre-trained models were 
employed, and the architecture of each model was 
maintained. For instance, the ReLU activation 
function originally applied in the model was retained. 
The only modifications were in the input layer, which 
was set to a target image size of 224 × 224 × 3 and the 
output layer modified to generate seven outputs and 
using a softmax activation function. All trainable 
parameters were re-trained. The Adam optimizer, with 
a learning rate of 0.0001 was applied. The categorical 
cross entropy loss was selected as the loss function 
during model training. 
 
 
2.4. VGGNet   
 

VGGNet is another convolutional neural network 
architecture which was proposed in 2014 [9]. The 
authors of VGGNet demonstrated the improvement of 
model accuracy with the use of deeper convolutional 
neural networks for image recognition [9]. To achieve 
this, a 3×3 convolution filter was utilized in the 
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model’s architecture. With this technique, 
convolutional neural networks with a depth of 16 and 
19 layers, were developed. These models are 
commonly referred to as VGG-16 and VGG-19. Like 
many other models, VGG-16 and VGG-19 are 
reported to have excelled on ImageNet data back in 
2014 competitions. In the present work, pre-trained 
models from the Keras API were utilized. Again, all 
trainable parameters were re-trained. Moreover, the 
models were modified to accommodate input image 
size of 224 × 224 × 3 and seven outputs. Furthermore, 
the input images were pre-processed to match the pre-
trained model image input requirement. During 
training, the Adam optimizer and categorical cross 
entropy loss function were applied. 
 
 
2.5. AlexNet  
 

AlexNet is a convolutional neural network that was 
first presented by Krizhevsky, et al. [11]. It was first 
utilized in the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 2012, where it 
successfully proved that deep CNN can be used for 
image classification problems. 

Implementing the AlexNet is relatively simple 
compared to other modern CNN architectures. It 
consists of eight layers; it has five convolutional 
layers, of which the first, second and the fifth are 
followed by max-pooling layers. The convolutional 
window shape starts with a size of 11 × 11, and reduces 
gradually to 5 × 5 and 3 × 3. As for the maxpooling 
layers, they have a pooling window of size 3 × 3 and a 
stride of 2 steps. AlexNet also has two fully connected 
hidden layers, and one fully connected output layer. 

Additionally, the model applies the ReLU 
activation function. It also applies data augmentation 
and dropout to reduce overfitting. The dropout 
technique is applied in the two first fully connected 
layers with a dropping ratio of 50%. In summary, the 
model has a total of about 6.84 million trainable 
parameters. 

For this work, AlexNet was implemented on the 
Keras platform using the Google Colab environment. 
The image target size of 224×224 was also used. 
Finally, like in the other models, to facilitate the 
comparison of the models, the same training, 
validation, and testing datasets were used with this 
model. 
 
 
2.6. Inception  
 

The Inception network architecture was developed 
with a purpose of increasing the computation 
efficiency within the network during model training 
and to achieve better accuracy [12, 13]. The Inception 
neural network architecture utilizes Inception blocks 
or factorized convolutions, and it is characterized by 
aggressive regularization. The model architecture 
allows for the creation of highly deep and wide 

convolutional neural networks while maintaining 
relatively less computational requirements than in 
many similar networks. The combination of Inception 
and residual networks was also noted to improve the 
overall performance and the accuracy of the deep 
convolutional neural network model by enabling faster 
training times than with Inception only models [14].  
Therefore, in this study, pre-trained InceptionV3 and 
InceptionResNetV2 models from the Keras API were 
employed. The models were modified to allow a 
custom image input size of 224 × 224 × 3, adding a 
flattened layer and an output layer of seven outputs. 
All trainable parameters were retrained. The Adam 
optimizer, a learning rate of 0.0001, and a categorical 
cross entropy loss function were employed. 

 
 

2.7. Xception 
 

The Xception architecture was inspired by the 
Inception architecture. In the Xception model, the 
Inception blocks are replaced with depth-wise 
separable convolutions [15]. This deep neural network 
architecture model was found to perform better than 
Inception V3 on a large image classification dataset. 
The pre-trained Xception model in Keras API was 
modified as in the case of the pre-trained Inception 
models in 2.6 by adding flattened layer and output 
layer of seven output classes. Again, all trainable 
parameters were re-trained. 
 
 
2.8. MobileNet 
 

MobileNets architecture is a streamlined version of 
Xception architecture. This type of deep convolutional 
network architecture can be used to create a 
lightweight model, which can be utilized in mobile 
applications and in embedded systems. The model also 
aims to achieve a trade-off between latency and 
accuracy [16]. In this work, the performance of pre-
trained MobileNetV2 model from the Keras API was 
compared with the other convolutional neural 
networks. The model was also modified as described 
in 2.7 by adding a flattened layer and an output layer. 
The image input size was the same as in previous 
models and the optimizer, learning rate, and loss 
function are the same as in 2.6. 
 
 
3. Results and Discussions 
 
3.1. Model Evaluation 
 

The performance of each model was determined 
using the accuracy metric. Since, the classes were 
balanced in the dataset, accuracy was considered a 
good measure of model performance on this data. This 
was monitored during model training and validation. 
Fig. 1 shows the behaviour of the loss and accuracy for 
each epoch. On the other hand, Table 1 presents the 
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overall results obtained after fine tuning the models’ 
hyperparameters such as the learning rates, number of 
epochs and batch sizes. The trained models were 
evaluated on a test dataset, and the outcome is 
summarized in Table 1. As shown in Fig. 1, in all 
cases, the training and validation losses were quite far 
apart, which is indicative of an over-fitting problem. 
This is evident form the fact that in most cases, the 
validation error continued to increase or significantly 
fluctuate as the number of epochs increased, whereas 

the error in the corresponding training data was 
continuously decreasing. Further, this behaviour 
persisted even after tuning the hyperparameters of 
several models. The overfitting problem observed in 
this present work can be attributed to the limited 
training examples for different food classes. Therefore, 
in future, it would be important to consider collecting 
more images or apply other available techniques such 
as data augmentation in order to improve the 
generalization of the model. 

 

 

 

 

 

 
 

Fig. 1. Training and validation loss and accuracy results. 
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Table 1. Model accuracy. 
 

 
 

 
The custom CCN model showed relatively low 

classification accuracy. In this model, the observed 
accuracy after several model tuning was 0.716 on the 
test data (c.f. Table 1). Moreover, overfitting in this 
case was highly pronounced as shown in Fig. (1i). The 
performance of this model could be improved by 
further tuning the hyperparameters of the model, as 
well as training it on a much larger dataset. 

An informal hyperparameter exercise was 
conducted to improve the performance of the LeNet 
model. For instance, changes were made to the 
optimizer, input color scale, activation function, and 
sub-sampling style, to improve the model’s 
performance. A validation accuracy of 49.6% was 
achieved when color images were considered, ReLU 
replaced tanh as the main activation function, softmax 
was used instead of the sigmoid function, and the input 
images were free of imposed distortion such as shear 
or flip. The top three results from this hyperparameter 
tuning exercise are shown in Fig. 2, with plots 
displaying the change in loss function value and 
accuracy over time in epochs. Specifically, the training 
and validation loss and accuracy for the top three 
modified networks are shown in this figure. 

The performance of the pre-trained models, from 
the Keras API, showed better performance than the 
other models like customized CNN, LeNet and 
AlexNet. Apart from their utilization of pre-trained 
parameters, these models presented a much deeper 
convolutional neural network architecture, which, for 
example, the customized CNN lacked. This means that 
the models with deeper networks were able to extract 
more relevant features during model training than 
those with relatively shallow architectures such as the 
customized CNN model. Besides the noticeable 
overfitting problem, the ImageNet pre-trained models, 
especially the Xception model, showed good results. 
The Xception showed a high accuracy on the 
validation and testing image data, with an accuracy of 
0.923 and 0.954, respectively (c.f. Table 1). 

 

 
 

 
 

 
 
Fig. 2. LeNet hyperparameter tuning: (a) Adam optimizer, 
softmax output activation, relu over tanh activation, 
distortion allowed in training dataset; (b) RMSProp 
optimizer, softmax output activation, relu over tanh 
activation, no distortion allowed in training dataset of color 
images, and (c) Adam optimizer, softmax output activation, 
relu over tanh activation, no distortion allowed in training 
dataset of color images. 
 
 
3.2. Performance of Trained Models 
 

In addition to the validation and testing datasets, 
the performance of models on an independent set of 
images was assessed. This was done to further 
evaluate the practical viability of the trained models in 
predicting whether the food represented in a particular 
image was a potential poison for the Labrador 
Retriever. Moreover, this was done to further compare 
the robustness of the trained deep convolutional neural 
network models. Fig. 3 demonstrates the observed 
prediction performance of select trained models on a 
smaller independent dataset. The results showed that 
among the 7 images, the customized CNN could 
correctly classify only the image of grapes. On the 
other hand, VGG-16, InceptionV3 as well as Xception 
were able to classify the images as shown in Fig. 3. 
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 (a) True labels  
 

 

 (b) Customized CNN 
 

 

 (c) VGG-16 
 

 

 (d) InceptionV3 
 

 

 (e) Xception 
 

Fig. 3. Performance of select trained models  
on custom images. 

 

4. Conclusions  
 

This study examined the performance of different 
CNN models to classify images of poisonous pet food. 
Overall, the Xception model consistently produced the 
best results. With this model, a user can apply the 
trained model to check if food is edible for their 
Labradors with an estimated accuracy of nearly 95 
percent, established by the test results. Similarly, the 
lightweight model, MobileNetV2 also showed quite 
good performance. Thus, implementing this trained 
model in mobile applications would allow flexibility 
for users to perform basic image recognition tasks to 
check if a particular food is edible for their Labradors. 

Additionally, the benefit of transfer learning was 
observed in this work. ImageNet pretrained models, 
such as VGG-16, InceptionV3 and Xception, 
outperformed all other models (AlexNet, Customized 
CNN and LeNet) that were trained from scratch using 
the collected images. 

Furthermore, it is also important to note that the 
dataset used in this study was relatively small and did 
not cover all the possible poisonous foods for the 
Labradors. Therefore, it can be said that for the 
identified models, even though some performed 
notably well on the current dataset, more data is 
needed to further train and develop the models before 
they can be considered practically useful. The need for 
more training data is also supported by the fact that all 
the models showed an overfitting problem, evident 
from the significant discrepancy between the training 
error and the validation error. Future work, would 
focus on collecting more image data, further 
optimizing the best models, and exploring the practical 
implementation of the findings of this work. 
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