MATHEMATICS 1LS3 TEST 1

Day Class Duration of Examination: 60 minutes McMaster University, 1 October 2013

E. Clements, M. Lovrić, O. Sanchez

FIRST NAME (please print): SOLUTIONS	
FAMILY NAME (please print):	
Student No:	

THIS TEST HAS 8 PAGES AND 7 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You need to show work to receive full credit.

Problem	Points	Mark
1	6	
2	6	
3	6	
4	5	
5	7	
6	5	
7	5	
TOTAL	40	

- 1. (a)[3] Which of the following expressions are defined, i.e., are real numbers?
 - (I) f(1) if $f(x) = \ln(e^x 4)$

NO

(II) f(2) if $f(x) = \arcsin x$

N0

domain of aucsin x is [-1,1]

(III) f(3) if $f(x) = (1 - x^2)^{-1}$

denominator #0

- (A) none
- (B) I only
- (C) II only
- DÌ**l**III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

- (b)[3] Which of the following statements is/are true for the discrete-time dynamical system
- $p_{t+1} = 0.23p_t, p_0 = 200 ?$
- & decreases
- \checkmark (III) The value $p^* = 0$ is an equilibrium
- $p_{t+1} = 0.25p_t$, $p_0 = 200$! Accreages

 X (I) The solution p_t increases exponentially

 X(II) The updating function is exponential

 Y(III) The value $p^* = 0$ is an equilibrium $p_t = 200 \cdot 0.23^t$ $p_t = 200 \cdot 0.23^t$ $p_t = 200 \cdot 0.23^t$
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

Name:	
Student No.:	

2. Identify each statement as true or false (circle your choice). No justification is needed.

(a)[2] If
$$m_{t+1} = m_t + 12$$
 and $m_0 = 7$, then $m_{10} = 120$.

TRUE

So
$$w_t = 7 + 12(10) = 127$$

(b)[2] If T is inversely proportional to S, then S is (directly) proportional to T.

(c)[2] The semilog graph of
$$f(t) = 12e^{-0.4t}$$
 is a line of negative slope. TRUE

FALSE

Name:	 	
Student No.:	 	

Questions 3-7: You must show work to receive full credit.

3. Medical tests show that the half-life of Ibuprofen (nonsteroidal anti-inflammatory drug) taken by adult women is about 1.8 hours. A female patient is given 400 mg of Ibuprofen.

(a)[2] By thinking in terms of half-lives, determine whether, after 6 hours, there is more or less than 50 mg of Ibuprofen left in the patient's body.

(b)[4] Calculate the amount of Ibuprofen left in the patient's body after 6 hours. In your calculations, round off to three decimal places. Make sure that your answer does not contradict part (a).

$$I(t) = I(0) e^{kt} \rightarrow 0.5 I(0) = I(0) e^{1.8k}$$

so $1.8k = 1.80.5$
 $k = 1.8 = 0.385$

thus
$$|T(t)=T(0)|e^{-0.385t}$$

and $T(6)=400\cdot e^{-0.385(6)}\approx 39.705$ mg
so it is less
than 50 mg

4. The population of Grizzly bears in the western half of Alberta is estimated to be

$$P(t) = \frac{160}{1 + 1.2e^{-0.4t}}$$

where t is time in years, with t = 0 representing the year 1980.

(a)[2] What question is answered by finding the inverse function of P(t)?

Given P, find t i.e., what time (what year) was it when the population was P?

(b)[3] Find the inverse function of P(t).

$$P = \frac{160}{1 + 1.2e^{-0.4t}}$$

$$P + 1.2Pe^{-0.4t} = 160$$

$$1.2Pe^{-0.4t} = 160 - P$$

$$e^{-0.4t} = \frac{160 - P}{1.2P}$$

$$-0.4t = ln(\frac{160 - P}{1.2P})$$

$$t = -\frac{1}{0.4}ln(\frac{160 - P}{1.2P})$$

$$d = -2.5ln(\frac{160 - P}{1.2P})$$

${ m Name:}__$			
Student No.:	 	 	

5. In a study of networks of neurons, researchers use the following intensity functions as generators of oscillatory inputs:

$$\lambda_1(t) = v_0 + a\cos(\pi mt)$$
 and $\lambda_2(t) = v_0 + a\cos(\pi mt + d)$

By reading the paper, you learn that the parameters v_0 , a, m and d are all positive.

(a)[1] What is the period of $\lambda_1(t)$?

$$\frac{2\pi}{\pi m} = \frac{2}{m}$$

(b)[1] What is the amplitude of $\lambda_1(t)$?

a

(c)[3] Starting with the graph of $\cos t$ on the interval $[0,2\pi]$, sketch the graph of $\lambda_1(t)$. (It is enough to show one period.)

(d)[2] Explain in words how to obtain the graph of $\lambda_2(t)$ from the graph of $\lambda_1(t)$.

 $\lambda_2(t) = v_0 + a \cos \left(\pi m \left(t + \frac{d}{\pi m}\right)\right)$ shift left by $\frac{d}{\pi m}$ por

Continued on next page

Name:	 _
Student No.:	

6. Consider the system $m_{t+1} = -0.5m_t + 6$, where $m_0 = 1$. (a)[1] Find the equilibrium point(s) of the system.

(b)[3] Starting with $m_0 = 1$, cobweb for three steps; i.e., in your diagram, show m_3 . Also, indicate the equilibrium point(s) that you calculated in (a).

(c)[1] Calculate the value of m_3 algebraically and compare with your diagram in (b).

$$m_0=1$$
 $m_1=-0.5(1)+6=5.5$
 $m_2=-0.5(5.5)+6=3.25$
 $m_3=-0.5(3.25)+6=4.375$

Name:	2.3
Student No.:	

7. It has been determined that the number of animal species, N, of certain length is inversely proportional to the cube root of their body length, L.

(a)[1] Express N as function of L.

$$N(L) = N = C \cdot \frac{1}{3JL}$$
 $C = some real number$

(b)[2] By how much does N change if L triples?

N changes by a factor of 0.693, ie, decreases to about 69.3%

(c)[2] Sketch the graph showing how N depends on L. Label the axes.

makes sense only when L,N>0 (thus c>0)
-113
N=c.L