Lecture 8: Determinants I

Determinants via cofactor expansion

(from Chapter 2.1 of Anton-Rorres)

Matrices encode information. Often we don't need all of the information contained in a matrix, and wish to extract a certain part of it.
An example of this is trace of a matrix: given a square matrix A, the trace $\operatorname{tr}(A)$ is a number containing some information about A.

A more important number we can extract from a matrix is the determinant. We have actually seen the determinant of a 2×2 matrix already: if

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then the determinant of A is

$$
\operatorname{det}(A)=a d-b c
$$

Recall that A is invertible if and only if $a d-b c \neq 0$. This result extends to square matrices of any size: a matrix is invertible if and only if it has non-zero determinant. For this and other reasons the determinant is an important quantity in linear algebra.

We already know how to compute the determinant of 2×2 matrices, and we will use this to compute the determinant of larger matrices. Given an $n \times n$ matrix, we compute its determinant in the following way:

1. break the matrix down into a collection of $(n-1) \times(n-1)$ matrices
2. break those down further into $(n-2) \times(n-2)$ matrices
3. keep breaking down until we produce a collection of 2×2 matrices
4. reassemble of the determinant of the $n \times n$ matrix from the collection of 2×2 determinants
(This is an example of mathematical induction.)

Definition 8.1: Determinant

Let A be a square matrix. The determinant of A is written $\operatorname{det}(A)$ or $|A|$. It is a number.

Definition 8.2: Minors and Cofactors

Let A be an $n \times n$ matrix. Denote by $A[i, j]$ the matrix formed from A by deleting the i-th row and the j-th column.
The $\underline{i j}$-th minor of A is the number

$$
M_{i, j}:=\operatorname{det}(A[i, j])
$$

The $\underline{i j}$-th cofactor of A is the number

$$
C_{i, j}:=(-1)^{i+j} M_{i, j}
$$

Warning: do not confuse the minor $M_{i, j}$ with the notation $(M)_{i j}$ for entries of a matrix.
To find $A[i, j]$, cover the i-th row and j-th column, then write down the remaining matrix. For example, if

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

then $A[2,3]$ is found by considering

$$
A=\left[\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right]
$$

and

$$
A[2,3]=\left[\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right]
$$

Example 8.3

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad A[1,1]=\left[\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right], \quad A[2,3]=\left[\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right] \\
& M_{1,1}=\operatorname{det}(A[1,1]) \\
& M_{2,3}=\operatorname{det}(A[2,3]) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right]\right) \\
& =45-48 \\
& =-3 \\
& C_{1,1}=(-1)^{1+1} M_{1,1} \\
& =(-1)^{2}(-3) \\
& =8-14 \\
& =-6 \\
& C_{2,3}=(-1)^{2+3} M_{2,3} \\
& =-3 \\
& =(-1)^{5}(-6) \\
& =6
\end{aligned}
$$

Note that there are more minors and cofactors of A to compute.

$$
B=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right], \quad B[4,1]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

but we don't know how to compute $M_{4,1}$ yet.

Question 8.4

Compute the remaining minors and cofactors of A in the example above.

Using minors and cofactors we can compute the determinant of matrices larger than 3×3. We are going to compute the determinant of larger matrices by computing lots of 2×2 determinants.

Fact 8.5: Cofactor expansion

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix, and $C_{i, j}$ its cofactors. Then $\operatorname{det}(A)$ can be found via cofactor expansion along the i-th row

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{k=1}^{n} a_{i k} C_{i, k} \\
& =a_{i 1} C_{i, 1}+a_{i 2} C_{i, 2}+\cdots+a_{i n} C_{i, n}
\end{aligned}
$$

or via cofactor expansion along the j-th column

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{k=1}^{n} a_{k j} C_{k, j} \\
& =a_{1 j} C_{1, j}+a_{2 j} C_{2, j}+\cdots+a_{n j} C_{n, j}
\end{aligned}
$$

The idea: as A is $n \times n$, the cofactors $C_{i, j}$ are determinants of $(n-1) \times(n-1)$ matrices. To compute these determinants, we apply cofactor expansion again, and obtain determinants of $(n-2) \times(n-2)$ matrices. We keep applying cofactor expansion until we hit 2×2 determinants, which we know how to compute!
Its important to note that it doesn't matter which row or column we expand along: we will always arrive at the same answer.

Example 8.6

In the 3×3 case the formula for expansion along the i-th row is

$$
\operatorname{det}(A)=a_{i 1} C_{i, 1}+a_{i 2} C_{i, 2}+a_{i 3} C_{i, 3}
$$

If we expand along the first row (so that $i=1$) this becomes

$$
\operatorname{det}(A)=a_{11} C_{1,1}+a_{12} C_{1,2}+a_{13} C_{1,3}
$$

Lets use this to compute $\operatorname{det}(A)$ for

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 0 & 5
\end{array}\right]
$$

The formula becomes

$$
\begin{aligned}
\operatorname{det}(A) & =1(-1)^{1+1}\left|\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right|+2(-1)^{1+2}\left|\begin{array}{ll}
0 & 2 \\
1 & 5
\end{array}\right|+3(-1)^{1+3}\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right| \\
& =(-1)^{2} 5+2(-1)^{3}(-2)+3(-1)^{4}(-1) \\
& =5+4-3 \\
& =6
\end{aligned}
$$

Lets compute the determinant again, expanding along the 1 -st column:

$$
\begin{aligned}
\operatorname{det}(A) & =1(-1)^{1+1}\left|\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right|+0(-1)^{1+2}\left|\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right|+1(-1)^{1+3}\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right| \\
& =5+1 \\
& =6
\end{aligned}
$$

What about a 4×4 ? We have to keep expanding. Expanding along the first row:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 1 & -1 \\
1 & 0 & 2 & -1 \\
0 & 1 & -1 & 0
\end{array}\right]\right)= & 1(-1)^{1+1}\left|\begin{array}{ccc}
2 & 1 & -1 \\
0 & 2 & -1 \\
1 & -1 & 0
\end{array}\right|+0(-1)^{1+2}\left|\begin{array}{ccc}
0 & 1 & -1 \\
1 & 2 & -1 \\
0 & -1 & 0
\end{array}\right| \\
& +1(-1)^{1+3}\left|\begin{array}{ccc}
0 & 2 & -1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right|+0(-1)^{1+4}\left|\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right|
\end{aligned}
$$

to complete this determinant we need to repeat the process on the remaining 3×3 matrices.

The difficulty of computing matrix determinants grows very fast with the size of the matrix. In fact, the computation of the determinant of an $n \times n$ matrix requires $n!=n(n-1)(n-2) \cdots(2)(1)$ individual computations.

For example, a 5×5 determinant requires 120 calculations, and a 6×6 determinant requires 720 calculations!
This is an example of a task in linear algebra very well suited to computers, but not

