Exercises from the end of Lecture 1 on complex roots
(a) Find the square roots of $-\sqrt{3}+i$.

Solution
First we need to put $-\sqrt{3}+i$ into polar form:
modulus $r=\sqrt{(-\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=\sqrt{4}=2$.
arguments $g=\arctan \left(\frac{1}{-\sqrt{3}}\right)=\frac{5 \pi}{6}<$ we take the arguments

$$
\text { in }[0,2 \pi) \text {. }
$$

The goal is to find z such that $z^{2}=-\sqrt{3}+i$

$$
=2\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right) .
$$

Using the formula we derived in doss, we have that

$$
\begin{aligned}
&|z|=\sqrt{2} \text { and } \arg (z)=\frac{\frac{5 \pi}{6}+2 \pi k}{2}, \text { for } k=0,1 \\
& \substack{n=2 \text { here } \\
n=1 \\
\text { here }} \\
&=\frac{5 \pi}{12}+\pi k, \text { for } k=0,1 \\
&=\frac{5 \pi}{12}, \frac{17 \pi}{12} .
\end{aligned}
$$

So, packaging this all together, we get that the square roots of $-\sqrt{3}+i$ are: $z=\sqrt{2}\left(\cos \left(\frac{5 \pi}{12}\right)+i \sin \left(\frac{5 \pi}{12}\right)\right)$ and $z=\sqrt{2}\left(\cos \left(\frac{17 \pi}{12}\right)+i \sin \left(\frac{17 \pi}{12}\right)\right)$.
(b) Find the fifth rots of $6 i$.

Solution We follow the same procedure as in (a).
First put $6 i$ in polar form:
modulus: $\sqrt{6^{2}}=6$.
argument here we cannot use our usual formula involving arctan, since we cannot divide by $a=0$. But draw picture:

$$
\xrightarrow{\mathbb{C}_{i} \hat{p} \theta=\pi / 2}
$$

and we see that an argument of $6 i$ is $\frac{\pi}{2}$.
We want to find values of z with $z^{5}=6 i=6\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)$.
Using the formula from class, we have that, for such z,

$$
\begin{aligned}
& |z|=\sqrt[5]{6} \text { and } z \text { has agunene } \frac{\frac{\pi}{2}+2 \pi k}{5 \leftarrow n=5} \text {, here. } \\
& \text { for } k=0,1,2,3,4 .
\end{aligned}
$$

$$
\begin{array}{r}
\text { i.e. argument } \frac{\pi}{10}, \frac{\pi}{10}+\frac{2 \pi}{5}=\frac{\pi}{2}, \frac{\pi}{10}+\frac{4 \pi}{5}=\frac{9 \pi}{10}, \\
\frac{\pi}{10}+\frac{6 \pi}{5}=\frac{13 \pi}{10}, \frac{\pi}{10}+\frac{8 \pi}{5}=\frac{17 \pi}{10} .
\end{array}
$$

Thus the fifth roots of $6 i$ are $z=\sqrt[5]{6}\left(\cos \left(\frac{\pi}{10}\right)+i \sin \left(\frac{\pi}{10}\right)\right)$,

$$
\begin{aligned}
& z=\sqrt[5]{6}\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right), z=\sqrt[5]{6}\left(\cos \left(\frac{9 \pi}{10}\right)+i \sin \left(\frac{9 \pi}{10}\right)\right), \\
& z=\sqrt[5]{6}\left(\cos \left(\frac{13 \pi}{10}\right)+i \sin \left(\frac{13 \pi}{10}\right), \quad z=\sqrt[5]{6}\left(\cos \left(\frac{17 \pi}{10}\right)+i \sin \left(\frac{17 \pi}{10}\right)\right) .\right.
\end{aligned}
$$

