Exercise from Lecture 6 on QR Decomposition
Exercise Find a $Q R$ De composition of $A=\left(\begin{array}{ll}3 & 5 \\ 4 & 15 \\ 0 & 12\end{array}\right)$.
Solution First notice that the columns of $A \mathcal{T} T$ Rom a lineally independent set. So we sur the Gram-Schmidb Process to obtain an orthonormal basis for $\operatorname{Span}\left\{\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right),\left(\begin{array}{l}5 \\ 15 \\ 12\end{array}\right)\right\}$.

$$
v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{\left(\begin{array}{lll}
3 & 4 & 0
\end{array}\right)^{\top}}{\left\|\left(\begin{array}{lll}
3 & 4 & 0
\end{array}\right)^{\top}\right\|}=\left(\frac{3}{5} \frac{4}{5} 0\right)^{\top}
$$

Find $u_{2}-\left\langle u_{2}, v_{1}\right\rangle v_{1}=\left(\begin{array}{lll}5 & 15 & 12\end{array}\right)^{\top}-$

$$
\left.\left.\left.\begin{array}{rl}
& \left\langle(51512)^{\top},\left(\frac{3}{5} \frac{4}{5} 0\right.\right.
\end{array}\right)^{\top}\right\rangle\left(\frac{3}{5} \frac{4}{5} 0\right)^{\top}\right\}\left(\begin{array}{lll}
\top & 15 & 12
\end{array}\right)^{\top}-(3+12)\left(\frac{3}{5} \frac{4}{5} 0\right)^{\top}-\left(\begin{array}{llll}
5 & 15 & 12
\end{array}\right)^{\top}-\left(\begin{array}{lll}
9 & 12 & 0
\end{array}\right)^{\top}=\left(\begin{array}{lll}
-4 & 12
\end{array}\right)^{\top} .
$$

This has nom $\left\|\left(\begin{array}{lll}-4 & 3 & 12\end{array}\right)\right\|^{\top}=\sqrt{16+9+144}=\sqrt{169}=13$.
So $v_{2}=\frac{\left(\begin{array}{ll}-4 & 31\end{array}\right)^{\top}}{13}=\left(-\frac{4}{13} \frac{3}{13} \frac{12}{13}\right)^{\top}$.
We know $A=Q R$ where $Q=\left(v_{1} v_{2}\right)=\left(\begin{array}{cc}3 / 5 & -4 / 13 \\ 4 / 5 & 3 / 13 \\ 0 & 12 / 13\end{array}\right)$ and $R=\left(\begin{array}{cc}u_{1} \cdot v_{1} & u_{2} \cdot v_{1} \\ 0 & u_{2} \cdot v_{2}\end{array}\right)$.

2
So compute $u_{1} \cdot v_{1}=\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}315 \\ 415 \\ 0\end{array}\right)=\frac{9+16}{5}=5$

$$
\begin{gathered}
u_{2} \cdot v_{1}=\left(\begin{array}{c}
5 \\
15 \\
12
\end{array}\right) \cdot\left(\begin{array}{c}
3 / 5 \\
4 / 5 \\
0
\end{array}\right)=3+12=15 \\
u_{2} \cdot v_{2}=\left(\begin{array}{c}
5 \\
15 \\
12
\end{array}\right) \cdot\left(\begin{array}{c}
-4 / 13 \\
3 / 13 \\
12 / 13
\end{array}\right)=\frac{-20+45+144}{13}=\frac{169}{13}=13 .
\end{gathered}
$$

So $R=\left(\begin{array}{cc}5 & 15 \\ 0 & 13\end{array}\right)$.
Thus we can write $A=\left(\begin{array}{cc}3 & 5 \\ 4 & 15 \\ 0 & 12\end{array}\right)$ as

$$
Q R=\left(\begin{array}{cc}
3 / 5 & -4 / 13 \\
4 / 5 & 3 / 13 \\
0 & 12 / 13
\end{array}\right)\left(\begin{array}{ll}
5 & 15 \\
0 & 13
\end{array}\right)
$$

(Chide that this product really is A!)

